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What are Magnetars?

* Magnetars are neutron stars with
extremely strong magnetic field ~ 101> G

*  Widely accepted as an explanation for soft
gamma ray repeaters (SGRs) and
anomalous X-ray pulsars.

* Main sequence core convention (with SGR 1900414
hydrodynamic instabilities) + extreme
core collapse + post-collapse MRI
amplifies the B field [Duncan, Thompson
1993].

SGR 1745+2900

http://www.nasa.gov/mission_pages Page 1



Rate (10° counts/s)

Magnetar bursts: short bursts from SGRs

* Repetitive emission of low-energy gamma-ray bursts, ~ 0.1s.
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Magnetar bursts: short bursts from SGRs

* Repetitive emission of low-energy gamma-ray bursts, ~ 0.1s.

* Optically thin thermal bremsstrahlung with kT ~ 20-40 keV.
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Number of events

Magnetar bursts: short bursts from SGRs
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Repetitive emission of low-energy gamma-ray bursts, ~ 0.1s.
Optically thin thermal bremsstrahlung with kT ~ 20-40 keV.

Power law distribution of burst energies, log-normal waiting times.

e

d | | | —

1079 1078 1077 107°

Fluence (ergs cm™?)

Gogus et al. Apj 2000

Page 2



Magnetar bursts: giant flares and QPOs

Ultra-luminous gamma-ray flare (10* -10%ergs), three events known.
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Magnetar bursts: giant flares and QPOs

Ultra-luminous gamma-ray flare (10* -10%ergs), three events known.

High frequency quasi-periodic oscillations (QPOs) present soon after the
major flare.

T

L Lol L ol

10

100 1000
Frequency (Hz)

SGR 1806+20, 2004 Dec.

1e+05 [ - I * T
720,976,2384 Hz <>  <—> 1840 Hz

— — — —— —— — — — — — — — — — — — — — — —)

lonooﬁ | “ |‘ I r 18,26 Hz —
(Ml ‘ P L !
‘ ‘ ‘“I?“ly‘u'“ # M/

"'J ”w M““ i WW

Counts/s

1000

| I | !
1000 100 200 300

Strohmayer and Watts, Apj 2006

27
Page 3



Magnetar bursts: giant flares and QPOs

Ultra-luminous gamma-ray flare (10* -10%ergs), three events known.

High frequency quasi-periodic oscillations (QPOs) present soon after the
major flare.

QPOs are likely to be associated with crustal shear modes [Duncan 1998].
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Magnetar bursts: giant flares and QPOs

Ultra-luminous gamma-ray flare (10* -10%ergs), three events known.

High frequency quasi-periodic oscillations (QPOs) present soon after the
major flare.

QPOs are likely to be associated with crustal shear modes [Duncan 1998].

[The detailed mechanism unknown ]
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The role of strong magnetic field

Rotation energy of the neutron star (~10%*ergs). is insufficient to power
the quiescent X-ray emission or the giant flares (~10% ergs).

Reduce Compton scattering cross-section to power super-Eddington
radiation (L > 10Lgyq) in SGRs.

Spin-down the star to an ~ 8s period in the ~ 10# years age of the
surrounding supernova remnant.

Maxwell stress strong enough to lead to plastic motion in local patches of
the crust.
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Plastic yielding of the crust

* A dominant core magnetic field stressing the crust from below excites
localized zones of plastic failure (In progress).
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Plastic yielding of the crust

A dominant core magnetic field stressing the crust from below excites
localized zones of plastic failure (In progress).

Stress-creep rate relation: molecular dynamics simulation [Chugunov &
Horowitz MNRAS 2010], o, ~ 0.1p

—> Stress, displacement ———»
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Plastic yielding of the crust

A dominant core magnetic field stressing the crust from below excites
localized zones of plastic failure (In progress).

Stress-creep rate relation: molecular dynamics simulation [Chugunov &
Horowitz MNRAS 2010], o, ~ 0.1p

—> Stress, displacement ———»
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Crust-magnetosphere coupling: set-up

* Construct a vertical background profile (stratified crust) with constant

creeping rate.
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Crust-magnetosphere coupling: set-up

Construct a vertical background profile (stratified crust) with constant
creeping rate.

Hydro-magnetic equations of motion: v = 9;&,, ¥ = 0.&,

8,5)(: 821} — €

Horizontal elastic wave affects the vertical stress, which leads to vertical
(runaway) relaxation of magnetic field.

Oy = ,uaa—é;, Opyr = sgn(@zv)\/cﬂ(é) — oz,
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Crust-magnetosphere coupling: energy ejection
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Liquefied patches

* Part of the crust is melted after the giant flare, hydromagnetic equations:

@’U = Uilfﬁzx
8tX = 82’0
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Liquefied patches

* Part of the crust is melted after the giant flare, hydromagnetic equations:
* Relaxation of a wave packet, possible origin for high frequency QPOs.
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Wave-plastic patch interaction

Low frequency QPOs: elastic shears waves passing by plastic patches.

They last ~ 100s with thousands of oscillation cycles — need to feed energy
to compensate loss due to crust-core coupling (Alfven wave radiation).

A novel super-radiant process.
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Wave-plastic patch interaction

Low frequency QPOs: elastic shears waves passing by plastic patches.

They last ~ 100s with thousands of oscillation cycles — need to feed energy
to compensate loss due to crust-core coupling (Alfven wave radiation).

A novel super-radiant process. Growth per cycle
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Conclusion

Core instability leads to local plastic patches in magnetar crusts and
eventually the giant flares.

Energy ejection is very fast and efficient by relaxing background magnetic
field in plastic patches (necessary to explain short bursts).

Super-radiant scattering by local plastic patches, necessary to explain
long-living QPOs.

Future work: understand the radiation from the magnetosphere.
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