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Introduction to superradiant instabllity

e Mass and angular momentum can be extracted from a black hole with ergoregion.

E.g., Penrose process t* time translation Killing field
E = —t%p, particle energy

ergoregion
t* spacelike
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e Area law not violated since A = 87 M [M + (M?* — a2)1/2} and particles extract angular
momentum as well.



Introduction to superradiant instabllity

e Similar process amplifies waves: superradiance

e Can be understood from the area theorem:

e Wave ~ e'™?e~"! changes BH area by

N SA=6M— Qs
&7

= o (1- ;)

5M
— M (1 _ QH%)

e Thus, if |0 < w < m{2g|, area increase requires

oM < 0



Introduction to superradiant instabllity

Reflecting boundary

e Superradiant instability caused
when combined with
reflecting boundary.

e Examples:
mass term for field
mirror
anti-de Sitter boundary

e Black hole must be sufficiently
small, or else no ergoregion
(e.g., Hawking-Reall bound)




Linear superradiant instability

e Background metric Jab

e asymptotically AdS black hole solution to Einstein equation in d > 4
e horizon Killing vector field K

e Metric perturbation 7ab

e solution to linearized Einstein equation with reflecting AdS boundary
condition

e Main result: Black hole is linearly unstable if K“ becomes spacelike
somewhere outside the black hole (i.e., there is an ergoregion).




Canonical energy method

e Standard method to prove instability: Search for mode solutions that grow in
time.

e This is difficult, in particular for complicated backgrounds, higher dimensions,
or gravitational perturbations. Requires decoupling and separation of
equations, which may not even be possible.

e Alternative is “canonical energy method”, which only requires construction of
initial data solving the constraint equations---not a solution to the evolution
eqguations.



Canonical energy method

e Canonical energy & is an integral over a Cauchy hypersurface ., quadratic in the
perturbation 7ab, satisfying

e Gauge invariance %4—
22 j
e Degeneracy precisely on perturbations to
other stationary black holes
201

e Conservation

e Positive flux at horizon and
Infinity

e Then &x, < &x,, and if a solution to the constraints Yab exists such that
Es, (v) < 0, instability follows.



Construction of canonical energy

e Starting with Einstein-Hilbert action, derive symplectic current, which
depends on two metric perturbations,

a 1 aocae
w (%,72):—9“”(

cv ef cv e ’
= YoveVdVief — Yibe VdV2ef)

e For solutions to the linearized Einstein equation, |V, w" = 0




Positivity of fluxes

e Integrate over a volume V. On solutions, Stokes’ theorem gives

O:/Vawa:/ ngw
1% oV

e Now take 72 = £x71, SO w* = w*(y, £x7)

and consider contributions from each boundary ar

/ n,aw® =0 2
le

1
/ naw® = — (Kcvcu)(Saab&f"’b + By, — B,
F 2 dm 2

(imposed reflecting AdS boundary, and certain gauge conditions)
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Positivity of fluxes

e [ntegrate over a volume V. On solutions, Stokes’ theorem gives

O:/Vawa:/ ngw*
1% oV

e Now take 72 = £x71 , so w® = w*(y, £x7)
and consider contributions from each boundary

Flux through infinity
/ now® = 0| vanishes in AdS
le

1
/ nawe =|— (Kcvcu)5aab5aa’b + By, — B,
F 2 dm F 12

f

nonnegative

(imposed reflecting AdS boundary, and certain gauge conditions)



Canonical energy

e So define the canonical energy
Ex(7,X) = Lnaw“(g;% £rv) — Ba(g;7)

e Above implies Ex(7,22) < Ex (v, 21) (decreases in time)

e Under restriction to certain gauge conditions at .s#" and .#, together with
0A = 0 and 0Hx = 0 for all asymptotic symmetries X, it can be shown that
Ex(v,%) is gauge-invariant and degenerate precisely on perturbations to other
stationary black holes.

Stability criterion

SN

Canonical energy non-negative Canonical energy negative for
for all such perturbations some perturbation
STABLE UNSTABLE




Construction of initial data

e Energy (with respect to k%) of a particle with 4-momentum p“is
gK,particle — _Kapa

If there is an ergoregion where KK, > 0 is spacelike, then a timelike or null p“
may be chosen to make &k particle < 0 in the ergoregion.

e Similarly, for a wave, we ought to be able to find a gravitational perturbation
such that the canonical energy Ex(v) <0

e Step 1: WKB method to obtain approximate compact support solution to
the constraint equations of the form va» = Aap exp(iwy) with w > 1
and Ex(y) ~ w?K%, <0

e Step 2: Obtain exact solution with Corvino-Schoen method, such that
canonical energy remains negative.



Construction of initial data

e Trade spacetime quantities for initial data quantities defined on -

Gab = Jab + Mg My

pab _ \/a(kab o qabkcc) Q}f"‘

dab >

_)@

0Gab = 4,°Q Ved )y
Yab > 1

5pab _ \/a(qacqbd o qaqud)§£n70d




Construction of initial data

e Assume there is a region where K“ is spacelike. Construct approximate initial
data of compact support in this region.

Ergoregion
e Trick: In this region, choose >. such that it y K

is tangent to K“ (possible since spacelike). M

This leads to the expression

1
167 N

—2p°*3GaaDpdq,* + p**6qaaD*Sqcp)

Er (8qap, 6p™°) = K (—20p" Dodgpe + 40p° Dpdgac + 26¢acDydp®™

N[ =

* Constraints [ q (D*Dadq,® — D*D*0qap + Ric(q)*dqa) +
q 3 (=8¢, D™ Pab + 20ap0p™ + 2p°p°, Sqpe+
C(5qab’5pab) = 2p cP d5q a —2p 5]? b —5Qa pabpcc) =0

\ _QQ%Db(q_%apab) + Da5CchPCb _ 2D05QCprbC )



Construction of initial data

e WKB expansion of initial data ¢q,, = (Z Q' (iw ”) exp(iw),

n>0

5P = (Z Pi?(z‘w)”“) exp(iwy)

n>0 T

WKB parameter phase function

e Constraints become

—D*Xx(Dax)QV° + DX (D*X)QN | _ ™
Py D'x i
Depends on lower order (m<n)

WKB approximations
¢ Oth order, choose

P =-Q%, QP =0,  QYD'x=0

ab

e Higher orders algebraic



Construction of initial data

e To leading order in WKB, the canonical energy is

w2

£(dq,0p) = “T6r /., K’ Dyx Q" Q 4+ O(w)

® So choosing K*D,x >0 gives £ <0 as w — o0

e Of course, any given WKB order is only an approximate solution. Using the
Corvino-Shoen method (see paper), we can correct our WKB initial data such
that

¢ | inearized constraints hold exactly
e Data remain smooth and compactly supported in slightly larger region

e The correction to the canonical energy is sufficiently small as w — o©



Conclusions and open questions

e Any black hole in AdS with a horizon Killing field that becomes spacelike is
linearly unstable to superradiant gravitational perturbations. Results follow from
a Lagrangian formulation of the theory, so should carry over to other fields.

e As perturbation grows, nonlinear effects become important:

e Backreaction of the perturbation on the black hole changes the background.

e Changing background alters the dynamics of the perturbation. Unstable
modes may become stable and fall back into the black hole. [See Bosch,
Green and Lehner (2016) for nonlinear results in the charged analog.]

e End point of instability remains unknown. No plausible final state, and
numerical simulations are challenging.



