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Multimessenger Synergy

Electromagnetic Gravitational Wave
Surveys Observatories
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*Running, 4 skies per month

Large Synoptic Survey Telescope (LSST): ~2034?
©2021-2032, one sky every 3 days )

eLISA/NGO

All-Sky Automated Survey for Supernovae (ASAS-SN)

*Running, | sky a night, not very sensitive;

e GW Detection/Localization <---> EM Detection/Localization;
* GW and light are connected theoretically but originate in wholly different mechanisms

* --> independently constrain models;
* Follow up (X-ray, sub-mm) observations can often be made via coordinated alert systemes;

*Cosmological “Standard Sirens”: New Distance vs. Redshift Measurement
Schutz 1986, Chernoff+Finn 1993, Finn 1996, Holz & Hughes 2005



Strategy

t=15600.

T= 150 Myr Gas
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Motivation of Simulation Design

Better Modelj/:

+Radiative Cooling
+Radiation Feedback .

- Mundim++2014

MHD stresses —> Ang. Mom. transportation;

Field dissipation and growth cannot be modeled w/
hydrodynamics;

Buoyancy, and lasting turbulence only possible in 3-d.

Post-Newtonian (PN) accuracy required for binary
separations below ~100M;

- Significant mass can follow binary through much of

this period (Noble++2012);
NR needed for merger proper;

- Analytical metric provides freedom to grid for the

gas instead of the spacetime. (Mundim++2014)

- Cooling provides a way to include more realistic

thermodynamics consistent with its luminosity
predictions;

- No longer have to rely on L ~ Mdot ;

- Eventually radiation feedback important in regions of

non-smooth optical depths (e.g., “gap”)



t=26/00.

B P ' “Excise” BBH to afford
- O(100) orbits and arrive at
1 O i 7 relaxed disk;
- - Will soon use for runs with
K resolved BH'’s;
5 Disk starts in
- “equilibrium”, threaded by
poloidal magnetic field;
O |
| t=50/00.
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MHD Simulations Predict an EM Signature:

Noble++2012
. . . Surface Density
Periodic Signal t=61200.
Tlump ~ 25&
QK(Tlump) 1-47Qbin
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(in frame co-rotating with lump)



Variabality vs. Post-Newtonian Accuracy:

| .5PN | .5PN-H 2.5PN
Same parameters Different parameters Benchmark
thinner initial disk same initial thickness (Noble++2012)

Top-down view of Surface Density

Less accurate metrics result in:

Slightly weaker m=I| mode or over-density (lump) feature;
*Also, hints that thicker disks may weaken lump mode;

Zilhao++2015



Variabality vs. Post-Newtonian Accuracy:
| .5PN | .5PN-H 2.5PN

Same parameters Different parameters Benchmark
thinner initial disk same initial thickness (Noble++2012)
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*Differences between PN orders is no larger than small differences in initial data
that help determine the disks’s evolution;

*These differences provide us with a measure of the systematic error involved in
our predictions;

*MHD turbulence >> 2.5PN order terms at a=20M;

Zilhao++2015
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Mass Ratio Noble++in-prep

Top-down view of Surface Density

g=1/10



- mass ratio surveys:

Mass Ratio Noble++in-prep

Mass ratio results are similar to other

¢ Newtonian MHD: Shi & Krolik 2015
e NR GRMHD: Gold++2014

q=1/2




The Lump Puzzle Noble++in-prep

e | ump is also seen in:
e Newtonian MHD (Shi & Krolik 2012,2015);
e 2-d viscous hydrodynamic simulations (e.g.,D’'Orazio++2012);

e ump is coincident with degradation of “MRI Quality Factor” or resolution within lump;
e |s it numerical? Do we lack the resolution to resolve the low B-field in the lump?
e |s it artificial? Are we draining the region of sufficiently magnetized material?
e |s it physical? Could the lump be a“dead zone” in which magnetic field is dissipated
at a rate faster than can be brought in?

| 27 |b'|
_ N oo Pl
MRI Quality Factor: 0 AxD Qg (r) /ol + 2P
Strateqgy: Noble++2010, Hawley++2011.2013
“Bigger Disk”:

* |ncrease radial extent of the disk, keeping H/R the same;
« Large extent increases reservoir of magnetic flux and mass;

 “Injected Flux”:
 Magnetic flux from t=0 added to late-time snapshot of original run.
« Net “vertical flux” can amplity other components and MRI.
* |ncreases local magnetic energy density by only a few percent.
 Emulates proposed explanations of state transitions in LXRB disks.
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Disk’s State Noble++in-prep

Bigger Disk Original Flux-Injected

FPS of Luminosity
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More magnetic flux led to:

* Without lump, less coherent temporal power spectrum, resembling more a
slightly bent power law like those seen in single black hole disks.

* Richer spectral including more beat mode present with a larger reservoir.

* Periodic signals are present as long as there is a strong m=1 (lump) mode.



Disk’s State Noble++in-prep

Bigger Disk Original Flux-Injected

Top-down view of Surface Density

More magnetic flux led to:

*Injected flux erased and prevented eventual development of m=I| mode.
*Bigger disk developed lump later, once surface density reached its steady state.



Disk’s State Noble++in-prep
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Bigger Disk Original Flux-Injected
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<pmag>

Omag — > 0.4 = “Resolved MRI Turbulence”

Guan & Gammie 2009, Sorathia++2012, Hawley++2011,2013

*Disks have resolved MRI throughout.

*No transition seen in “Bigger Disk™ run across transition to the lump phase.
*Equivalent resolution in run without the lump.



Disk’s State Noble++in-prep

Bigger Disk Original Flux-Injected
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Average Specific Stress = < 1074 = Lump Formation

(p)

* From gradual redistribution of mass and flattening of surface density from
initial conditions, stress per unit mass decreases.

* Transition to lump phase is evident, appears there is a threshold ~ |e-4 below
which lump forms;.

* We are trying to understand original of the this threshold value.



Summary & Conclusions

*Our 3-d MHD, PN-regime simulations develop a high-Q signal that is non-
trivially connected to the binary’s orbit, but tied to the period of the beat
mode between lump’s orbit and the binary’s orbit.

*The signal’s strength degrades with decreasing mass ratio, implying that it
can help diagnose properties of the binary, and it disappears altogether
between |/5<q < 1/2;

*At a separation of 20M, with equal-mass binaries, differences in the metric
at |.5PN and 2.5PN orders are smaller than stochastic and systematic
uncertainties, with PN-accuracy effects being even smaller for smaller mass
ratios.

*Over density m=| mode (lump), develops while disk’s MRl is resolved and
for different conditions, implying that the lump is physical and typical for
similar disks.

* Beat signal is expected as long as the stress per unit mass is not too large,
i.e. the disk is magnetically-submissive.



The Future is Bright!

Stay-tuned to this channel for Dennis Bowen'’s talk on
minidisk dynamics next!

Visualization by M. Vanmoer (NCSA)



