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Idea:  

The Brans-Dicke theory with ω=-3/2 is conformally invariant 
and in vacuum reproduces ordinary general relativity when 
one chooses a certain family of gauges. Solutions to the field 
equations of the theory can be mapped via a conformal 
transformation to solutions of general relativity. 

We argue that the conformal theory is the fundamental  
theory that one should quantize and that it is amenable to a  
loop quantum gravity quantization. 

There exist several potential advantages in having a  
conformally invariant theory at the time of quantization. 
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Why conformal invariance? 

-Our investigations on quantum field theory on quantum space-times in 
spherical symmetry shows that, the discreteness of the quantum space-
time naturally regulates the quantum field theory. 
Quantities that in quantum field theory in curved space-time become 
infinite, on a quantum space-time become finite, but large, and depend 
on the details of the Planck-scale microphysics, especially the 
separation of the vertices. 
-Dependence on the micro scale physics requires a (finite) 
renormalization to make the macro scale physics of the quantum field 
independent of the micro scale degrees of freedom.The problem is that 
the renormalization depends on the details of the background quantum 
state, particularly the spacing.  

One should need to add state dependent counterterms to the action. 
This is not what is usually encountered in renormalization and appears 
quite artificial.  

In a conformally invariant theory, state dependent counterterms are not 
required. 
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Continuum limit 

It has been observed that the existence of a Planck scale  
imposes restrictions at the process of going to the continuum  
limit in that if one adds additional points to the spin network  
the continuum approximation of volumes and areas does not  
Improve. There is no spatial structure at physical scales smaller 
than Planck scale 

This makes it difficult to take the various limits involved in the  
definition of the Hamiltonian constraint in a non-trivial way.  

There have been some extensions of the kinematical setup proposed to deal with this, in particular  
with the issue of the continuum limit, but none is still widely accepted (see for instance  
(Dittrich et al., Zapata, Thiemann et al., Freidel, and many others) 

In a conformal theory of gravity conformal spin networks can be  
be indefinitely refined.  
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The Theory:  

The theory we wish to consider is the conformally invariant ω=-3/2 case of the 
Brans-Dicke theory. The action in metric variables is given by: 

In the latter form it is clear that the dilaton is conformally invariant. 
Recall that under conformal transformations: 

€ 

gab →gab
___

= exp(Θ(x))gab ,

φ →φ
_

= exp(−Θ(x)
2

)φ.
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In the gauge                                                                 the theory is identical to  
Einstein gravity.  

One can introduce a conformal invariant “metric” given by  

The Brans-Dicke action takes the manifestly invariant form: 

Notice that the conformal metric has different dimensionality than the usual metric: 
“intervals” are dimensionless. 
For the loop quantization we consider the Holst version of the action 

With γ the Immirzi parameter and             the curvature of the SL(2,C) connection  
        . 
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One can write this action in terms of the geometrical triad and connection by 
substituting in the action: 

Besides the Hamiltonian, diffeomorphisms and Gauss constraints the theory has 
an additional conformal constraint    

And introducing the standard Ashtekar Barbero canonical variables we get 

with 
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In terms of the conformally invariant connection one can introduce conformally 
invariant parallel propagators 
along a path η,  

And construct in the usual fashion spin network states 

One can solve the diffeomorphism constraint via group averaging and obtain 
conformal spin knots, |S(c)>, orthogonality and other properties are similar to the 
usual case and one can introduce conformal operators that characterized the 
conformal properties of the space and are similar to the standard area and volume 
operators. 

One can introduce canonical variables that are conformally invariant: 

€ 

ψS (A
(c )) =⊗l R

( jl )(U(A(c ),ηl ))⊗n in
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Coupling the Standard Model 

A common worry about conformal theories of gravity is that matter is not 
conformal in nature, so coupling realistic matter to conformal gravity theories is 
problematic. We would like to argue that this can be overcome via a variation of 
the Higgs mechanism.  

One starts by coupling the massless Standard Model to conformal gravity by 
using conformal invariant fields, 

Where ΨM are the matter fields and d is a suitable power to make the matter 
action conformally invariant. In the matter fields we include a Higgs field. Let us 
concentrate on its portion of the action.  

Recall that the Higgs field Lagrangian has the following form 
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And the potential is a “Mexican hat” with a negative mass –µ2 

λ, λ’, α, are dimensionless coupling constants. This is not conformally invariant 
when coupled to general relativity so a term                        needs to be added 
to the action in that case. As we shall see such a term is not necesarilly 
required. 

Bars, Steinhardt and Turok arXiv:1307.8106 (2013); arXiv:1307.1848 (2014) have 
proposed a conformal extension of the previous action, 
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The matter action therefore would read, 

Where Da is covariant derivative with the connection associated with the weak 
interactions. LSM is the massless Lagrangian of the Standard Model, which is 
conformally invariant. Inspired in the form of the loop invariants under all the 
kinematikal constraints we introduce conformal invariant variables 

And the resulting Matter Lagrangian takes a simpler form 

With the Standard Model portion of the action as we discussed before. 

The kinematics of loop invariants may be easily extended to the matter case 
by including open spin networks. 
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If one considers a gauge fixing φ(x)=φ0=constant, one can write the dimensionful 
parameters in terms of φ0, 

If one now carries out the Higgs mechanism for the resulting theory one gets the 
mass and expectation value of the Higgs, 

With g the Yang-Mills coupling constant for the weak interactions. In turn this 
endows with mass all the particles in the Standard Model in the usual fashion.  

All masses and expectation values get fixed in terms of the Planck scale and 
dimensionless parameters, no matter what gauge fixing chosen, implying that 
the physics is gauge invariant. Ratios of fundamental masses are independent 
of the gauge (units) chosen. 
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Advantages: 

-It is possible to consider conformal invariant extensions of the Standard Model 
coupled to gravity. 

-In quantum field theory in quantum space times calculations, the resulting 
(finite) renormalized results do not depend on the chosen quantum state, in 
particular on the spacing of the vertices of the spin network. The dependence 
on the Planck scale structure of space time may be absorbed with a redefinition 
of the dilaton field, i.e with a different gauge fixing. 

-New perspectives are opened on the issue of taking continuum limits in LQG. 

-At the quantum level all the physical constants become running coupling 
constants. Choosing a fixed Planck scale G, relations of particle masses to the 
Planck mass could change at the quantum level due to running of the 
dimensionless coupling constants. At low energies we live in a world where 
particle masses have a fixed relation to the Planck mass, at high energies and 
high curvatures quantum gravity corrections will change them. In that context 
the best way to describe things are conformally invariant.  

t hooft has suggested that in a conformal invariant field theory one should 
demand the β functions all vanish and all coupling constants are fixed by this 
condition.  
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The terms quadratic in the curvatures that appear in renormalization do not 
involve GB so they cannot be absorbed by changing the conformal gauge. The 
corrections that appear in QFT in CST are all finite. Logarithmically divergent 
terms in the continuum now just provide small corrections that can be viewed as 
stemming from quantum gravity effects and are unambiguously determined. As a 
consequence there is not trace anomaly for the stress energy tensor. 

   Summary 

• A	conformal	extension	of	general	rela1vity	can	be	
quan1zed	via	loop	quan1za1on	techniques.	
• It	is	equivalent	to	general	rela1vity	by	fixing	a	family	of	
gauges.	
• It	can	be	coupled	to	the	usual	Standard	Model	through	
a	modified	Higgs	mechanism	in	which	the	gauge	fixing	
endows	the	Higgs	boson	with	mass.	
• It	opens	new	possibili1es	in	QFT	in	CST	calcula1ons	and	
in	con1nuum	limits	of	LQG.	


