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A WORD ON NEUTRON STARS 

 + 2500 pulsars in the Galaxy; 90% isolated. 
 Precise masses for ~35 NS, from 1.17 to 2𝑀⊙. 

 Radius measurements for a dozen NS 

pinned down to the 9.9 - 11.2 km range. 

 
 Well described by perfect fluid with cold 

equation of state, 𝑝 = 𝑝(𝜌). 
 One-to-one relation: EoS ↔ 𝑀/𝑅 diagram. 

 
 Particularly relevant for us: “highly 

compact” neutron stars, satisfying 

 

𝑝𝑐 >
1

3
𝜖𝑐 

 

which is achieved if 𝑀/𝑅 ≳ 0.27. 
http://xtreme.as.arizona.edu/NeutronStars/ 
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 Natural, mathematically consistent and simple alternative to GR.  

 Tractable: full nonlinear numerics (Barausse et al. 2013, Palenzuela et al. 2014, Shibata et al. 2014) 
 

 Jordan frame:                𝑆 =
1

16𝜋
 𝑑4𝑥 −𝑔 𝐹 Φ 𝑅 − 𝑍 Φ  𝑔 𝜇𝜈𝜕𝜇Φ𝜕𝜈Φ + 𝑆𝑚 Ψ𝑚;  𝑔 𝜇𝜈  

 

 

 

 

 Einstein frame:               𝑆 =
1

16𝜋
 𝑑4𝑥 −𝑔 𝑅 − 2𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 + 𝑆𝑚 Ψ𝑚; 𝑎 𝜙 2𝑔𝜇𝜈  

 

 Examples: 

 Fierz-Jordan-Brans-Dicke theory: 𝐹 Φ = Φ, 𝑍 Φ = 𝜔𝐵𝐷/Φ. 

 (massless) NMC scalar field: 𝐹 Φ = 1 − 𝜉Φ2, 𝑍 Φ = 1. 

𝑔𝜇𝜈 = 𝐹 Φ  𝑔 𝜇𝜈 = 𝑎 𝜙 −2𝑔 𝜇𝜈

𝜙 =  𝑑Φ
3

4

𝐹′2 Φ

𝐹2 Φ
+

1

2
 
𝑍 Φ

𝐹 Φ

1/2 
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𝑆 =
1

16𝜋
 𝑑4𝑥 −𝑔 𝑅 − 2𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 + 𝑆𝑚 Ψ𝑚; 𝑎 𝜙 2𝑔𝜇𝜈  

 Field equations: 
 

𝐺𝜇𝜈 − 2𝛻𝜇𝜙𝛻𝜈𝜙 + 𝑔𝜇𝜈𝛻𝜌𝜙𝛻𝜌𝜙 = 8𝜋𝑇𝜇𝜈 

𝛻𝜇𝛻
𝜇𝜙 = −4𝜋 𝛼(𝜙)𝑇 

𝛻𝜇𝑇
𝜇𝜈 = 𝛼(𝜙)𝑇𝛻𝜈𝜙 

 

with 𝛼 𝜙 ≔ 𝑑 ln 𝑎(𝜙) /𝑑𝜙. 

 Expand:  
𝛼 𝜙 = 𝛼0 + 𝛽0 𝜙 − 𝜙0 + 𝑂[ 𝜙 − 𝜙0

2] 

 

 

 

Model 1 (M1): 𝛼 𝜙 =
1

3
tanh[ 3 𝛽 (𝜙 − 𝜙0)] 

Model 2 (M2): 𝛼 𝜙 = 𝛽 𝜙 − 𝜙0  𝛼0~
1

𝜔𝐵𝐷
~0  

(Solar System) 
Responsible for the 

most interesting effects! Differ only in 𝑂[ 𝜙 − 𝜙0
2] terms. 
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 Nonperturbative strong-field effect (Damour & 

Esposito-Farèse, 1993) 

 Phase transition ∼ spontaneous magnetization 

𝛼 𝜙 = −6 𝜙 − 𝜙0  

SPONTANEOUS SCALARIZATION OF NEUTRON STARS 
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 Nonperturbative strong-field effect (Damour & Esposito-Farèse, 1993) 

 Strong field effects can be very important! 
 

 Scalarization depends crucially on 𝛽0 = 𝛼′(𝜙0). 

 Known to happen when 𝛽0 ≲ −4.35.  

 Dipolar radiation: PT rules out 𝛽0 ≲ −4.5 (Freire et al. 2012) 

 𝛽0 > 0 largely unexplored (and unconstrained)! 
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 Nonperturbative strong-field effect (Damour & Esposito-Farèse, 1993) 

 Strong field effects can be very important! 
 

 Scalarization depends crucially on 𝛽0 = 𝛼′(𝜙0). 

 Known to happen when 𝛽0 ≲ −4.35.  

 Dipolar radiation: PT rules out 𝛽0 ≲ −4.5 (Freire et al. 2012) 

 𝛽0 > 0 largely unexplored (and unconstrained)! 

 

 Insight from linear stability analysis (Harada 1997) 

 

 

 

 

 𝑇 > 0 (⇒ 𝑝 > 𝜖/3) necessary for instability if 𝛽0 > 0: How “exotic” is this condition? 

 

SPONTANEOUS SCALARIZATION OF NEUTRON STARS 

Equil. solution 

𝑔𝜇𝜈 = 𝑔𝜇𝜈
𝐸  

 𝜙 = 𝜙0 

Linear scalar 

perturbation 

𝜙 = 𝜙0 + 𝛿𝜙 
𝛻𝜇𝛻

𝜇𝛿𝜙 = −4𝜋𝛽0𝑇𝛿𝜙 
Unstable modes if  

meff
2 = −4𝜋𝛽0𝑇 

sufficiently negative 
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 Analysis of EOS in parametrized form & of theoretical 

models [Mendes, PRD91, 064024 (2015)] 

 𝑇 > 0 inside hydrodynamically stable stars? 

 Yes! According to many (but not all!) viable EOS. 

 Usually EOS allowing more compact stars (𝑛𝑝𝑒𝜇 models). 

Excluded: 

- red:  Mmax < 2𝑀⊙ 

- blue: 𝑐𝑠 > 1 

 

Viable: 

- Gray: 𝑇 < 0 

- White: 𝑇 > 0 

Γ1 = 2.5 

Γ1 = 3.5 

𝑇 > 0 INSIDE “REALISTIC” NEUTRON STARS? 

21st International Conference on General Relativity and Gravitation – Columbia, New York, July 11th  



What is the nonlinear development of 

the instability in this case? 

LINEAR STABILITY OF GR SOLUTIONS 

Equil. solution 

𝑔𝜇𝜈 = 𝑔𝜇𝜈
𝐸  

 𝜙 = 𝜙0 

Linear scalar 

perturbation 

𝜙 = 𝜙0 + 𝛿𝜙 
𝛻𝜇𝛻

𝜇𝛿𝜙 = −4𝜋𝛽𝑇𝛿𝜙 
Unstable modes if  

meff
2 = −4𝜋𝛽𝑇 

sufficiently negative 

< 𝜌𝑐𝑟𝑖𝑡 

> 𝜌𝑐𝑟𝑖𝑡 
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NONLINEAR DEVELOPMENT 

 GR solution unstable ⟹ Scalarization 

 Scalarization depends only on 𝛽 

 Details of solutions depend on 𝛼(𝜙) 

M1:  𝛼 𝜙 =
1

3
tanh[ 3 𝛽 (𝜙 − 𝜙0)] 

M2:  𝛼 𝜙 = 𝛽 𝜙 − 𝜙0  

𝛽 < 0 

𝛽 = −6 
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NONLINEAR DEVELOPMENT 

 GR solution unstable ⟹ Scalarization 

 Scalarization depends only on 𝛽 

 Details of solutions depend on 𝛼(𝜙) 

M1:  𝛼 𝜙 =
1

3
tanh[ 3 𝛽 (𝜙 − 𝜙0)] 

M2:  𝛼 𝜙 = 𝛽 𝜙 − 𝜙0  

𝛽 < 0 𝛽 > 0 

 GR solution unstable ⟹ Model-dependent outcomes! 

 M1: Spontaneous scalarization OR gravitational collapse 

(Mendes & Ortiz 2016) 

 M2: gravitational collapse (Palenzuela & Liebling 2016; 

Mendes & Ortiz 2016) 

More in N. Ortiz talk! 

𝛽 = 100 𝛽 = −6 
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DISCUSSION: OBSERVATIONAL CONSTRAINTS 

 Current constraints on STTs with coupling function  

𝛼 𝜙 = 𝛼0 + 𝛽0 𝜙 − 𝜙0 + 𝑂 𝜙 − 𝜙0
2  

 Solar system: 𝛼0 < 3.5 × 10−3 

 Pulsar timing: 𝛽0 > −4.5 

 Cosmology: potentially constrains full form of 𝛼(𝜙). (Boisseau et al. 2000) 

 Model 𝛼 𝜙 = 𝛽𝜙 yields bad cosmology for 𝛽 < 0! (Damour & Nordtvedt 1993) 

 First constraints on 𝛽0 > 0 if NS with 𝑀/𝑅 ≳ 0.27 are confirmed. 

 Observational signatures: 

 Scalarization: changes in orbital dynamics, redshift of surface atomic lines, gravitational 

wave emission. 

 Premature gravitational collapse: mere observation of star beyond threshold compactness! 

 Dynamical scalarization (in progress)? 

 Results are sensitive to the details of the coupling function! 

Freire et al 2012 
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