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GR and ‘observables’

General Relativity is a gauge theory

⇒ physical observables should be diffeomorphism invariant

canonically:

Dirac observables as ‘constants of motion’ of constraints

dynamics relationally ⇒ ‘evolving constants of motion’ [Wheeler 60’s; Rovelli 90’s;

Dittrich ’06,’07......]

⇒ notoriously difficult to construct

often overlooked: even absent in presence of chaos

1 what then is observable?

2 consequences for QT?
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Non-integrability and constraints [Dittrich, PH, Koslowski, Nelson ’15; ’16]

recall: non-integrable (unconstrained) systems:

no global (smooth) constants of motion other than H exist

⇒ trajectories lie on (2N − 1)-dim. energy surface

now: constrained system weakly non-integrable if:

@ differentiable Dirac observables indep. of constraints

⇒ @ reduced phase space

⇒ gauge invariant DoFs exist, but non-differentiable (or local)

⇒ no Poisson algebraic structure ⇒ how to represent observables in QT?

difference:

unconstrained: do not need to solve dynamics

constrained: need to solve dynamics

to access physical DoFs
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Why worry about this?

GR likely weakly non-integrable (N-body problem, Mixmaster, BKL,...)

⇒ (probably) @ smooth Dirac observables and reduced phase space in full GR

⇒ what are repercussions for QG?
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Toy model: free particles on a circle [Dittrich, PH, Koslowski, Nelson ’15; ’16]

Compactify free dynamics: xi + 1 ∼ xi , i = 1, 2 ⇒ conf. manf. Q ' T 2
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Absence of sufficiently many Dirac observables [Dittrich, PH, Koslowski, Nelson ’15; ’16]

momenta pi are Dirac observables

BUT: O(pi ; x1, x2) const. on trajectories with ∂iO 6= 0 discontinuous in xi

ergodicity destroys integrability

space of solutions not a manifold

⇒ no reduced phase space, no (sufficient) algebra of observables

can still have gauge invariant ‘observables’, however, either
1 global and discontinuous, e.g.

M = (x1 + n1)p2/m2 − (x2 + n2)p1/m1

2 local [Bojowald, PH, Tsobanjan ’11a; ’11b]
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Standard Dirac quantization: no semiclassical limit [Dittrich, PH, Koslowski, Nelson ’15; ’16]

Hkin = L2(T 2) basis:
ψk1,k2(x1, x2) = exp(2πik1x1) exp(2πik2x2), ~k ∈ Z2

p̂iψ = −i~∂iψ

quantum constraint

k2
1 +

m1

m2
k2
2 =

2m1E
~2

for m1/m2 /∈ Q 0 ≤ dimHphys ≤ 4

NOT peaked on class. orbit for m1/m2 /∈ Q width/separation ≈ 1

physical transition amplitudes show no semiclassical behaviour
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Polymer type quantization: discrete topology [Dittrich, PH, Koslowski, Nelson ’15; ’16]

Hkin given by (uncountable) basis

ψx′
1,x

′
2
(x1, x2) = δx′

1,x1
δx′

2,x2

no momenta, but translations

(Rµ1 ψ)(x1, x2) = ψ(x1 + µ, x2), (Rµ2 ψ)(x1, x2) = ψ(x1, x2 + µ)

constraint acquires continuous spectrum for µ /∈ Q:

{~2

µ2 (2− cos(2πρ1)− cos(2πρ2))− E |ρ1, ρ2 ∈ [0, 1)}

⇒ upon superselec. get ∞-dim. separable Hphys as L2 over ‘momentum’ ρ

⇒ on this Hphys have sufficiently many observables

M̂ :=
i
2π

„
sin(2πρ2)

∂

∂ρ1
− sin(2πρ1)

∂

∂ρ2

«
(‘angular mom.’)

[M̂, e2πiρ1 ] = −e2πiρ1 sin(2πρ2)

⇒ features good semiclassical transition amplitudes
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Closed FRW with (min. coupled) massive scalar [PH, Kubalova, Tsobanjan, ’12]

Φ

Α

Φ

Α

	
  

(a) (b) (c)

(a) benign solution, (b) defocussing of nearby trajectories in turning region, (c) devoid of global clocks

Ham. constraint C = p2
φ − p2

α − e4α + m2 φ2 e6α

model chaotic and non-integrable [Page ’84, Cornish, Shellard ’98; Belinsky, Khalatnikov,

Grishchuk, Zeldovich ’85]

in region of max. expansion αmax (chaotic scattering):
1 breakdown of semiclassicality

[also indep. observed in Kiefer ’88]

2 relational observables only transient

⇒ relational evolution breaks down
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Conclusions

Chaos precludes smooth Dirac observables

⇒ probably no smooth Dirac observables and red. phase space for full GR

serious problem for ‘standard’ constraint quantization

what do we do?

always ∃ generalized discontinuous ‘observables’

⇒ adapt method of quantization, refine topology until sufficiently many
observables continuous

⇒ here: polymer quantization overcomes troubles of ‘standard’ quantization!

further reading: arXiv:1602.03237, 1508.01947, 1111.5193

10 / 10


