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Extremal black holes in a nutshell

• Parameters are saturated (a=M in Kerr) 

• Enhanced symmetries (Kerr/CFT) 
• SL(2,R) x U(1) 

• Vanishing surface gravity (zero Hawking temperature) 
• redshift effect 

• Conserved quantities 
• infinite number of charges (Aretakis constants)

e�v ! 1
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Stability of Extremal Kerr

• Consider Kerr geometry with a=M and evolve small 
amplitude initial data (e.g. massless scalar).

• Does the solution grow large enough to back-react?

• Mode stability (Whiting, 1989) forbids exponentially 
growing modes, but doesn’t prove boundedness of 
generic perturbations. 

• Aretakis (2010) shows linear perturbations decay but 
transverse derivatives blow up polynomial on the event 
horizon. Lucietti and Reall extend to gravity (2012).  
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• Is the Aretakis horizon instability invisible to a mode 
analysis?

• No. The derivative instability at the horizon is 
recovered as a branch point in the complex frequency 
plane.

• The mode technique allows us to predict the growth 
of nonaxisymmetric modes.  

• We find enhanced growth rates for these modes.
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The Laplace transform and linear stability

• The late-time dynamics of a linear system is dictated 
by singular points of its transfer (Green) function in 
the complex frequency plane.

• Mode stability - lack of singular points in the upper 
half plane

• No exponentially growing modes. 
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spheroidal harmonics (SL problem) 

radial Green function
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nonaxisymmetric massless scalar perturbations.  
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• Construct         from homogeneous solutions via the 
method of matched asymptotic expansions.  

• valid for   

• Near zone  

• Far zone 

Matched asymptotic expansion
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Extremal Kerr Green function
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Extremal Kerr Green function

• The branch point at the superradiant bound frequency 
k=0 determines the late-time solution.  

• The character of the singularity is determined by the 
conformal weight.
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Conformal Weight 

• The conformal weight labels representations of the near-
horizon symmetry group, SL(2,R). 

• At the superradiant bound, the highest weight solution 
has conformal weight given by

H is

8
><

>:

= 1/2 + ib, |m| & .74` (dominant),

> 1, & /2 Z, 0 < |m| . .74` (subdominant),

= `+ 1, m = 0 (axisymmetry).



Growth Rates on the event horizon

• Axisymmetric perturbations (compact data off H)
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Consistent with Aretakis’ estimates and numerical simulations (Lucietti et al 2013) 
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The nonaxisymmetric modes yield the dominate 
derivative growth. 

One derivative grows for compact “far” initial data.  

local energy density ' v=)



Interpretation

• Off the horizon, the field decays slower (1/v). 
The jump in the decay at the horizon 
explains the derivative growth.

simple example f(v, x) = e

�vx



• Extended ringing of nearly extremal Kerr (Detweiler, 1980) 

•  The collective excitation of weakly damped overtones           
slows decay (transiently) from exponential to power 
law. (Yang et al 2013)  

• The modes vanish in the extremal limit (no real, non-
superradiant QNMs) and the branch point “emerges’’ 
at the superradiant bound.

Relation to QNMs

!n = m/2 +O()



Looking ahead - current work

• We have generalized to spin weighted fields  

• We’re relating our analysis to the MST solution 

•  MAE is recovered as the first term in a convergent 
series representing the full linearized solution.  

 (n)
4 ' v3/2+n, v ! 1 Curvature 

blowup!



Open questions

• What are the rates when we consider initial data that 
penetrates the horizon? 

• Can we find nonaxisymmetric conserved quantities on 
the horizon? 

• Is there a CFT analog of the instability? 


