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Extremal black holes in a nutshell

+ Parameters are saturated (a=M in Kerr)

- Enhanced symmetries (Kerr/CFT)
- SL(2,R) x U(1)

»Vanishing surface gravity (zero Hawking temperature)
+ redshift effect e —1

- Conserved guantities
- Infinite number of charges (Aretakis constants)
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Stability of Extremal

Kerr

-+ Consider Kerr geometry with a=M and evolve small
amplitude initial data (e.g. massless scalar).

- Does the solution grow large enough to back-react?

- Mode stability (Whiting, 1989) forbids exponentially

growing modes, bu

t doesn’t prove boundedness of

generic perturbations.

- Aretakis (2010) sho
transverse derivativ

ws linear perturbations decay but
es blow up polynomial on the event

horizon. Lucietti and Reall extend to gravity (2012).
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Mode analysis deficiency?

+ |s the Aretakis horizon instability invisible to a mode
analysis?

- No. The derivative instability at the horizon is
recovered as a branch point in the complex frequency
plane.

+ The mode technigue allows us to predict the growth
of nonaxisymmetric modes.

- We find enhanced growth rates for these modes.
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The Laplace transform and linear stability

$ = G o (data)

- The late-time dynamics of a linear system is dictated
by singular points of its transfer (Green) function In
the complex frequency plane.

- Moae stability - lack of singular points In the upper
half plane

-+ No exponentially growing modes.
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We compute the Laplace transform of the Green function for
nonaxisymmetric massless scalar perturbations.

spheroidal harmonics (SL problem)

1 - .
G = - Z ezmw / Sﬁmw (Q)Sme (el)gﬁmw (mv x/)e—zwvdw
, —0o0—+1cC T

radial Green function

inverse Laplace Transform



Matched asymptotic expansion

+ Construct geme. from homogeneous solutions via the
method of matched asymptotic expansions.

- validfor k=w-—-—m/2«1

- Nearzone z<«1 .
Horizonat x =0

Far zone x> k .
H !
buffer

kE<<le <1

near far



—xtremal Kerr Green function
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—xtremal Kerr Green function

: , | (i) TERE N (Y
gﬁmw(xax ) ™~ f(SIZ' ) _k(—ik)_2H+N_ € ]:ZOAJ(CU) (Z]{) , x — 0.

generates growth

+The branch point at the superradiant bound frequency
k=0 determines the late-time solution.

» The character of the singularity is determined by the
conformal weight.



Conformal Weight

+ The conformal weight labels representations of the near-
horizon symmetry group, SL(2,R).

- At the superradiant bound, the highest weight solution
has conformal weight given by

1/24+1db, |m| 2> .74¢ (dominant),
1,& ¢ 7Z, 0<|m|<.74¢ (subdominant),
¢+ 1, m =0 (axisymmetry).

H is

\Y,



Growth Rates on the event horizon

+  Axisymmetric perturbations (compact data off H)

B = (97) |4,

when CID,(};'Z) ~ U_Q, vV — 00
n=4¥¢+1
. (I)(n) ~ an—L—2
otherwise 7y =T y, U —=00

Consistent with Aretakis’ estimates and numerical simulations (Lucietti et al 2013)
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Growth rates on the event horizon

- Nonaxisymmetric perturbations (compact data off #)

- Complex H

- Real

(Df(;?) ~ n1/2,

UV — OO

(I)”ELI?) ~ Un—H—im

)

v — OO

H >1




The nonaxisymmetric modes yield the dominate
derivative growth.

One derivative grows for compact “far” initial data.

—> local energy density ~ v



Interpretation

- Off the horizon, the field decays slower (1/v).
The jump In the decay at the horizon
explains the derivative growth.

simple example  f(v,z) =e™"*



Relation to QNMs

Extended ringing of nearly extremal Kerr (Detweiler, 1980)
wn =m/2+ O(k)

The collective excitation of weakly damped overtones
slows decay (transiently) from exponential to power
law. (Yang et al 2013)

+ The modes vanish in the extremal limit (no real, non-
superradiant QNMs) and the branch point “emerges”
at the superradiant bound.



Looking ahead - current work
- We have generalized to spin weighted fields

3/24m Curvature
’ blowup!

DR

- We're relating our analysis to the MST solution

MAE Is recovered as the first term in a convergent
series representing the full linearized solution.



Open guestions

- What are the rates when we consider Initial data that
penetrates the horizon??

- Can we find nonaxisymmetric conserved guantities on
the horizon”

- Is there a CFT analog of the instability?



