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The problem.

We wish to determine the self-forced motion and field (e.g. energy
and angular momentum fluxes) of a particle with scalar charge

�ψret = −4πq

∫
δ(4)(x− z(τ)) dτ.

2 general approaches:

I Compute enough “geodesic”-based self-forces and then use
these to drive the motion of the particle. (Post-processing,
fast, accurate self-forces, relies on slow orbit evolution)

I Compute the “true” self-force while simultaneously driving the
motion. (Potentially slow and expensive, potentially less
accurate self-forces)



Effective source approach.

... is a general approach to self-force and self-consistent orbital
evolution that doesn’t use any delta functions.

Key ideas

I Compute a regular field, ψR, such that the self-force is

Fα = ∇αψR|x=z,

where ψR = ψret − ψS, and the Detweiler-Whiting singular field ψS

can be approximated via local expansions: ψS = ψ̃S +O(εn).

I The effective source, S, for the field equation for ψR is regular at
the particle location

�ψR = �ψret −�ψS = S(x|z, u),

where �ψS = −4πq
∫
δ(4)(x− z(τ)) dτ − S.



Self-consistent vs. geodesic evolutions.

I One main goal is to compare our self-consistent evolutions
with Niels Warburton’s geodesic evolutions.

I First attempt: 3+1 multi-patch finite difference code with a
C0 effective source.

I 3+1 accuracy limited by the non-smoothness of the source
leading to high frequency noise with 2nd order convergent
amplitude.

I Self-consistent evolutions agreed beautifully with geodesic
evolutions within the errors (dominated by the noise).

I Next attempt: 3+1 multi-patch finite difference code with a
C2 effective source.

I Geodesic evolution agreed with the C0 evolutions and the
frequency domain result with the noise reduced by more than
an order of magnitude.

I However, we found differences between C2 and C0 results as
soon as the back-reaction was turned on.



Discontinuous Galerkin method.

E0 E E E1 2 3

I Split the domain into
N nth order
elements.

I Each element
contains n+ 1 nodes.

I u(t, x) ≈∑n
i=0 ũ(t, xi)Pi(x)
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I The numerical approximation is double valued at all element
boundaries.

I Derivatives are approximated by multiplying the state vector
in each element by a derivative matrix.

I Neighboring elements are glued together by numerical fluxes
based on characteristics.



Code description.

We use a 1+1 dimensional code based on the spherical harmonic
decomposition of the scalar wave equation in Schwarzschild
tortoise coordinates r∗ = r + 2M log(r/(2M)− 1). The effective
source is also decomposed into spherical harmonics.

−∂
2ψ`m

∂t2
+
∂2ψ`m

∂r2
∗
− V`(r)ψ`m = Seff

`m.

As r∗ ∈ [−∞,∞] we split the domain into three regions. In the
inner (r∗ ∈ [−∞, T1]) and outer (r∗ ∈ [T2,∞]) regions we
introduce new coordinates (τ, ρ) used in Bernuzzi, Nagar &
Zenginoğlu (2011).

t = τ + h(ρ)

r∗ = ρ/Ω(ρ)

where h(ρ) and Ω(ρ) are chosen suitably (hyperboloidal layers) in
each region to make the inner boundary (ρmin) coincide with the
horizon H and the outer boundary (ρmax) coincide with I +.



Code description.

In the middle region (r∗ ∈ [T1, T2]) we introduce a time dependent
coordinate transformation (Field, Hesthaven & Lau, 2009)

t = λ

r∗ = T1 +
rp∗ − T1

ξp − T1
(ξ − T1) +

(T2 − rp∗)(ξp − T1)− (rp∗ − T1)(T2 − ξp)
(ξp − T1)(T2 − ξp)(T2 − T1)

(ξ − T1)(ξ − ξp)

where rp∗ is the time-dependent particle location. This satisfies
r∗(λ, T1) = T1, r∗(λ, ξ

p) = rp∗, r∗(λ, T2) = T2. In addition we use
the world tube approach so that we evolve ψR

`m = ψret
`m − ψS

`m in
the region r∗ ∈ [W1,W2] , while elsewhere we evolve ψret

`m.
The values of T1, W1, W2 and T2 are chosen to coincide with
element boundaries.

H T1 T2(λ, ξ)(τ, ρ) I +(τ, ρ)

W1 W2
ρmaxρmin

ψret
ℓm ψR

ℓm ψret
ℓm



Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for geodesic eccentric orbit (e = 0.1, p = 9.9).
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Errors for accelerated circular orbit (r0 = 10, ω = 1
2ωg).
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Errors for accelerated circular orbit (r0 = 10, ω = 1
2ωg).
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Conclusions and Outlook.

I Discontinuous Galerkin is a powerful numerical method that
allows us to overcome the non-smoothness of the effective
source.

I The accuracy has been improved and computational cost
reduced by at least 2 to 3 orders of magnitude.

I Eccentric geodesic orbits and constant accelerated circular
orbits works very well.

I We are working on making accelerated eccentric orbits and
non-constant accelerated circular orbits work (very close).

I Self-consistent evolutions are just around the corner.

I We have a finite difference prototype of a coupled mode
evolution code for scalar fields in Kerr (to be ported to DG).

I Gravitational perturbation codes (both Lorentz and
Regge-Wheeler) are in various stages of development/testing.


