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Introduction

The use of exact models with an equation of state is relevant
in the study of relativistic compact stars.
In past years there have been diverse attempts to find exact
solutions of compact stars with a linear, quadratic and
polytropic equation of state. However the exact models with a
quadratic and a polytropic equation of state are rare because
of the increased of nonlinearity in the system
It is interesting to not just find new exact solutions with
equation of state, but also to link them to observed
astronomical objects.
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Introduction

Recently Mafa Takisa et al. (2014) have studied some physical
features of linear equation of state which are consistent with
the observed object such PSRJ1614-2230 (1.97± 0.08M�),
see (Demorest et al. 2010)
By using a quadratic equation of state, we intend to study the
effects quadratic term on compact objects, and particularly for
the pulsar PSRJ1614-2230.
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The model

The line element for a static spherically symmetric interior matter
distribution has the form :
Metric
ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2), (1)
with ν = ν(r) and λ = λ(r) as the potentials.

The energy momentum tensor for an anisotropic charged imperfect
fluid sphere is of the form

Energy momentum tensor
T ab = diag(−ρ− 1

2E 2, pr − 1
2E 2, pt + 1

2E 2, pt + 1
2E 2), (2)

The Einstein’s field equations
Gab = 8πG

c4 T ab (3)
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The model

By using geometrical units (G = c = 1) and using the expressions
(1) and (2), the Einstein’s field equations can written as

Einstein’s field equations

8πρ+ 1
2E 2 = 1

r2

[
r(1− e−2λ)

]′
, (4)

8πpr − 1
2E 2 = − 1

r2

(
1− e−2λ

)
+ 2ν′

r e−2λ, (5)

8πpt + 1
2E 2 = e−2λ

(
ν ′′ + ν ′2 + ν′

r λ
′ − λ′

r − ν
)
, (6)

σ = 1
4πr2 e−λ(r2E )′, (7)

where σ = σ(r) is named the proper charge density and primes
indicate differentiation with respect to r .

In the presence of charge the gravitational mass is defined by

Gravitational mass

M(r) = 4π
∫ r

0

(
ρ(ω) + E2

8π

)
ω2dω. (8)
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Physical requirements

The matter variables should satisfy the following conditions

Requirements
(a) The radial pressure pr (ε) = 0 at the boundary ε.
(b) The tangential pressure pt > 0 and ρ > 0 within the star.
(c) The speed of sound should v2 = dpr

dρ ≤ 1.
(d) At the centre pr (0) = pt(0).
(e) The anisotropy ∆(0) = pt(0)− pr (0) = 0.
(f) The energy condition ρ− pr − 2pt > 0.
(g) At the boundary r = ε we require
e2ν(ε) = 1− 2M

ε + Q2

ε2 , e−2λ(ε) = 1− 2M
ε + Q2

ε2 , M(ε) =M.
(h) The matter distribution should satisfy an equation of state
pr = pr (ρ).
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Solution

In order to solve the system (4)-(7), we make these choices

Choices

The potential e2λ = 1+ar2

1+br2

The electric field in the form E 2 = sa2r4

(1+ar2)2

The equation of state in the quadratic form
pr = γρ2 + αρ− β, where , a, b, s, β, α and γ are constants.

We get solution

for the potential e2ν

e2ν = D2 (1 + ar2)2m (1 + br2)2n exp[2F (r)],
with F(r), m and n given by

P Mafa Takisa Stellar objects in the quadratic regime



Solution

F (r), m and n
F (r) =
γ
[

2(2b−a)(1+ar2)+(b−a)
2(1+ar2)2

]
− sγ

[
(a−b)2(ar2+2)
4(a−b)(1+ar2)2 − a(2a+s)(1+ar2)

4(a−b)(1+ar2)2

]
+ ar2

16b [s2γ − 2s(1 + α)− 4β]− sγ
[

s(a−b)+3sb(1+ar2)
32(a−b)2(1+ar2)2

]
m = − s(1+α)

8(b−a) + α
2 + γ[2(a − b)]2

[
b2

(b−a)3 + b
(b−a)2 + 1

4

]
+

sγ
8(a−b)3

[
(a − b)[2s(a − b) + a + b]− 6ab2 + 2b3(2a − 1)

]
,

n = (1+α)(a−b)
4b − 2α(a−b)

4(b−a) + β(a−b)
4b2

+γ[2(a − b)]2
[

b2

(b−a)3 + b
(b−a)2 + 1

4

]
+

sγ
16b2(b−a)3

[
a4(s + 4b) + 2b(6a2b2 − 2a3b)

]
+ sa2(1+α)

8b2(b−a) .
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Numerical application

We make the following transformations :

ã = aL2, b̃ = bL2, s̃ = sL2,

where L has the dimension of length. We choose γ such that the
causality condition v2 = dpr

dρ ≤ 1 is satisfied and take the
parameter values : ã = 53.34, L = 43.245 km, α = 0.33,
β = 1.7× 1014g cm−3 and s̃ = 0.0 for uncharged bodies. The
parameter α has the fixed value but the parameter γ is allowed to
vary. We obtain different masses, radii and central densities for
different parameter values of γ. The results are given in Table 1.
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The particular interest are the underlined values γ = 0.140,
α = 0.33, R = 10.30, M

R = 0.191 and ρc = 3.45× 1015g cm−3

which give the corresponding mass of the PSR J1614-2230.

Table: 1. Variation of mass, radius and central density in term of γ in
the absence of charge. The parameter γ is variable and α is fixed.

γ b̃ s̃ α M M/R R(km) ρc(×1015 gcm−3)
0.100 46.44 0.0 0.33 2.55 0.230 11.07 4.0
0.126 44.60 0.0 0.33 2.37 0.218 10.85 3.84
0.132 42.50 0.0 0.33 2.18 0.206 10.60 3.66
0.140 40.01 0.0 0.33 1.97 0.191 10.30 3.45 PSR J1614-2230
0.148 37.73 0.0 0.33 1.77 0.177 9.99 3.25 Vela X-1
0.154 36.47 0.0 0.33 1.667 0.170 9.82 3.14 PSR J1903+327
0.163 34.30 0.0 0.33 1.49 0.157 9.51 2.95 Cen X-3
0.177 31.62 0.0 0.33 1.29 0.141 9.13 2.72 SMC X-1
0.189 29.70 0.0 0.33 1.14 0.129 8.83 2.55
0.196 28.61 0.0 0.33 1.07 0.124 8.65 2.46
0.200 24.92 0.0 0.33 0.89 0.111 8.04 2.14
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The pulsar J1614-2230

To illustrate the qualitative effect of the quadratic term of the
equation of state with γ 6= 0 in the interior of PSR J1614-2230, we
have plotted the energy density ρ, radial pressure pr , tangential
pressure pt , the measure of anisotropy ∆, speed of sound
v2 = dpr

dρ , and the quantity ρ− pr − 2pt in these Figures
respectively for E = 0.
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The pulsar J1614-2230
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The pulsar PSR J1614-2230

We also investigate the quantitative effect of γ for the PSR
J1614-2230. We compute the quantities M, R M

R and ρc by
allowing the parameters γ and α to be variable. The relevant
values are contained in Tables 2 and 3. The underlined values in
these tables represent the corresponding values that we expect for
the object PSR J1614-2230 when γ = 0.
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The pulsar PSR J1614-2230

For E = 0 and γ = 0.200, we point out a small of increase for the
radius and the mass of 4% and 4.5% respectively.

Table: 2. Different masses and radii for PSR J1614-2230 for the
uncharged case. The parameters γ and α are variable.

γ b̃ s̃ α M M/R R(km) ρc(×1015 gcm−3)
0.0 40.01 0.0 0.99 1.97 0.191 10.30 3.45
0.140 40.01 0.0 0.33 1.97 0.191 10.30 3.45
0.158 40.01 0.0 0.24 2.02 0.192 10.50 3.45
0.163 40.01 0.0 0.21 2.06 0.192 10.70 3.45
0.177 40.01 0.0 0.15 2.10 0.193 10.90 3.45
0.196 40.01 0.0 0.06 2.13 0.193 11.06 3.45
0.200 40.01 0.0 0.04 2.14 0.193 11.09 3.45
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The pulsar PSR J1614-2230

For E 6= 0 and γ = 0.200 it is clear that the quadratic term γ leads
to an increase of 10% and 11% in the radius and the mass of a
stellar object.

Table: 3. Different masses and radii for PSR J1614-2230 for the
charged case. The parameters γ and α are variable.

γ b̃ s̃ α M M/R R(km) ρc(×1015 gcm−3)
0.0 40.01 14.5 0.99 2.13 0.231 9.21 3.45

0.140 40.01 14.5 0.33 2.13 0.231 9.21 3.45
0.158 40.01 14.5 0.24 2.32 0.232 10.05 3.45
0.163 40.01 14.5 0.21 2.34 0.232 10.10 3.45
0.177 40.01 14.5 0.15 2.35 0.232 10.15 3.45
0.196 40.01 14.5 0.06 2.36 0.232 10.18 3.45
0.200 40.01 14.5 0.04 2.36 0.232 10.19 3.45
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Conclusion

We observed that for both cases E = 0 and E 6= 0, the
quadratic term γ has the effect of increasing the
compactification factor M

R slightly.
The compactification factor is in the range of M

R ∼
1
10 to 1

4 ;
which corresponds to neutron stars and ultra-compact stars
(Tikekar and Jotania 2007)
We have shown the relevance of the quadratic equation of
state to relativistic objects, in particular to the PSR
J1614-2230.
The solution with quadratic equation state found may be used
to study physical features of a superdense object with both
uncharged and charged matter.
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Thank you for your attention
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