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In Scalar-Tensor Theories (STT) with �0 > 0, highly compact

neutron stars (NS) obeying realistic equations of state (EoS)

possess linearly unstable scalar modes.

Our goal

To investigate the final fate of such 
unstable equilibrium stars

Do they evolve to a stable, scalarized state? Do they collapse?

* Full non-linear numerical simulations

Our strategies
* Energy balance analysis
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Relevant previous results

Damour-Esposito-Farese case (M2), J. Novak, 1998
Nonminimally coupled fields (like M1): M. Alcubierre et al., 2010, M. Ruiz, 2012.

(Dynamic transition to scalarized states in the � < 0 case)

Solution ⇢̃c/⇢0 Mb[M�] M [M�] M/Rs |�c��0| |!|[M�]

1* 10.0 2.3594 1.9650 0.287 0 0

2 (M1) 9.2061 2.3594 1.9641 0.273 0.095 0.30

3 (M2) 8.0747 2.3594 1.9459 0.209 0.284 1.23

Table 1: Some equilibrium solutions with � = �6. The solution marked

with a star is used as initial data for our numerical simulation.
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Model 1
(NMC field)

New results
Exploring the � > 0 case
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Solution ⇢̃c/⇢0 Mb[M�] M [M�] M/Rs |�c � �0|
1* 11.20 2.4304 2.01058 0.302 0

2 11.4251 2.4304 2.01053 0.304 0.023159

3 12.2279 2.4304 2.01056 0.311 0.039036

4 14.3890 2.4304 2.01132 0.325 0.027827

Table 2: Some equilibrium solutions in M1 with � = 100.

Solutions marked with stars are used as initial data for

numerical simulations.
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Model 2
(DEF)

New results
Exploring the � > 0 case

(In agreement with C. Palenzuela and S. Liebling, 2016)
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Model 2
(DEF)

New results
Exploring the � > 0 case

(In agreement with C. Palenzuela and S. Liebling, 2016)

Solution ⇢̃c/⇢0 Mb[M�] M [M�] M/Rs |�c � �0|
1* 11.20 2.4304 2.01058 0.302 0

2 10.9493 2.4304 2.01087 0.312 0.055

3 14.4841 2.4304 2.01142 0.327 0.023

4* 11.20 2.43611 2.01435 0.313 0.050

5* 11.20 2.39877 1.99273 0.325 0.081

6* 11.20 2.32321 1.94928 0.332 0.104

Table 3: Some equilibrium solutions in M2 with � = 100.

Solutions marked with stars are used as initial data for

numerical simulations.
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(DEF)

New results
Exploring the � > 0 case

Solutions 2 and 3 are energetically disfavored vs. solution 1: likely unphysical

(In agreement with C. Palenzuela and S. Liebling, 2016)
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5* 11.20 2.39877 1.99273 0.325 0.081

6* 11.20 2.32321 1.94928 0.332 0.104

Table 3: Some equilibrium solutions in M2 with � = 100.

Solutions marked with stars are used as initial data for

numerical simulations.
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