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Classical Penrose Inequality with Angular Momentum

It is believed that the general picture for the long time evolution of

spacetime consists of two main parts. Whenever singularities

develop (which is a generic phenomenon), they must always be

hidden inside black holes. Moreover, spacetime will eventually

settle down to a collection of stationary rotating black holes, which

in electrovacuum must be given by Kerr-Newman solutions.

Since gravitational radiation carries away positive energy, the mass

of any initial state should be greater than or equal to the mass of

the final state mi ≥ mf . Moreover, the Hawking area theorem

ensures that the area of horizons is nondecreasing Ai ≤ Af . Thus,

if conditions are imposed to ensure conservation of angular

momentum (such as axisymmetry and electrovacuum) and charge

(absence of charged matter), then a basic inequality relating these

quantities in any initial data set may be (heuristically) derived from

the relation they satisfy within the Kerr-Newman spacetime.
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The last inequality follows because, as a function of A, the

expression on the right-hand side is nondecreasing precisely when

the auxiliary area-angular momentum-charge inequality is satisfied.

For single stable apparent horizons, the auxiliary inequality is

known to hold, and thus may be ignored in this situation. By

setting qi = 0 we then obtain the desired inequality
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Consider an axisymmetric initial data set (M3, g , k) with one end

that is asymptotically flat, and with a connected minimal surface

boundary. If M3 is simply connected, Chrusciel and Nguyen have

shown that M3 \ ∂M3 ∼= R3 \ I and there exists a global ‘Weyl’

coordinate system such that

g = e−2U+2α(dρ2 + dz2) + ρ2e−2U(dφ+ Aρdρ+ Azdz)2,

where η = ∂φ is the Killing field.

These Weyl coordinates give the same metric structure as Brill

coordinates, but only cover the region outside the horizon. Here

the orbit space consists of the upper half plane

R2
+ = {(ρ, z) | ρ ≥ 0} with an interval I = [−m1,m1] removed

from the z-axis. The parameter m1 is uniquely determined by the

initial data.
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An Example: Schwarzschild

In Weyl coordinates the Schwarzschild metric is given by
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1

2
log

√
ρ2 + (z + m)2 +
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ρ2 + (z + m)2 +
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ρ2 + (z −m)2 + 2m

,
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− 4m2

4
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√
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,

where m = m1 is the mass.

Note that both U0 and α0 blow up like log ρ near the horizon rod,

but are smooth and bounded everywhere else. For general initial

data the asymptotics will be the same near the horizon, and thus

we decompose general data into a Schwarzschid part plus a

smooth and bounded part: U = U0 + U, α = α0 + α.
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The structure of the metric in Weyl coordinates implies a nice

formula for the scalar curvature

2e−2U+2αR = 8∆U − 4∆ρ,zα− 4|∇U|2− ρ2e−2α (∂zAρ − ∂ρAz)2 ,

where ∆ρ,z = ∂2ρ + ∂2z .

Moreover, if J(η) = 0 and M3 is simply

connected, then a twist potential exists

dv = ? (k(η) ∧ η) ,

and yields a lower bound for the scalar curvature

R ≥ |k |2 ≥ 2
e6U−2α

ρ4
|∇v |2

after using the dominant energy condition.
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By integrating the scalar curvature we find that

madm ≥
1

8π

∫
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)
dx

+
1

4

∫ m1

−m1

(α(0, z)− 2U(0, z))dz + m1.

The volume integral is the reduced harmonic energy of a singular

map R3 → H2 given by x → (u(x), v(x)) where u = − log ρ+ U.

As before, we may use convexity of the energy along geodesic

deformations in order to minimize this functional and show that its

minimum is achieved at the Kerr harmonic map which possesses

the same angular momentum and parameter m1, that is∫
R3

(
|∇U|2 +

e4U

ρ4
|∇v |2

)
dx ≥

∫
R3

(
|∇Uk |2 +

e4Uk

ρ4
|∇vk |2

)
dx .
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The rod integral may be estimated with maximum principle

techniques to yield a similar style lower bound∫ m1

−m1

(α(0, z)− 2U(0, z))dz ≥
∫ m1

−m1

(αk(0, z)− 2Uk(0, z))dz .

We then have the following result.

Theorem
(MK, Weinstein) Let (M3, g , k) be a simply connected,

axisymmetric, maximal, asymptotically flat initial data set with

connected minimal surface boundary, which has nonnegative

energy density µ ≥ 0 and compatibility condition for the existence

of a twist potential J(η) = 0. Then

madm ≥

√√√√m2
1 +

√
m4

1 + 4J 2

2
,

and equality occurs if and only if the data are isometric to the

canonical slice of a Kerr spacetime.
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The right-hand side of the inequality gives the correct form for the

Penrose inequality with angular momentum, but the area is not

necessarily that of the initial data

madm ≥

√
Ak

16π
+

4πJ 2

Ak
.

Here Ak represents the area of the Kerr black hole having angular

momentum J and parameter m1.

It is interesting to note that the theorem only requires the boundary

to be a minimal surface, but not necessarily area outerminimizing.

Question 1: If the boundary is area outermimizing, does this

inequality imply the Penrose inequality with angular momentum?

Question 2: How does the parameter m1 evolve in time? If it is

nondecreasing, like the area of the event horizon, then the

inequality of the theorem is implied by cosmic censorship.
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Mass-Angular Momentum-Charge Inequality

Theorem
(Dain, Chrusciel, Costa, Schoen, Zhou) Let (M3, g , k,E ,B) be a

complete, simply connected, axially symmetric, maximal initial

data set with one end asymptotically flat and the other either

asymptotically flat or asymptotically cylindrical. If JEM(η) = 0 and

the charged dominant energy condition holds then

m2
adm ≥

q2 +
√

q4 + 4J 2

2
.

Equality holds if and only if the initial data are isometric to the

canonical slice of an extreme Kerr-Newman black hole.
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Mass-Angular Momentum Inequality

Theorem
(Alaee, MK, Kunduri) Let (M4, g , k) be a complete, simply

connected with H2(M4) = 0, bi-axially symmetric, maximal initial

data set for the 5-dimensional Einstein equations satisfying µ ≥ 0

and J(ηi ) = 0, i = 1, 2 and with two ends, one designated

asymptotically flat and the other either asymptotically flat or

asymptotically cylindrical, then

m3 ≥ 27π

32
(|J1|+ |J2|)2 .

Moreover if Ji 6= 0, i = 1, 2, then equality holds if and only if the

data set is the canonical slice of an extreme Myers-Perry spacetime.

If one or more angular momenta vanish, then the corresponding

extreme Myers-Perry solution either has a naked singularity or is

not complete, and thus equality cannot be achieved under the

hypotheses of the theorem.
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