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Tests of general relativity with GW 150914 [Abbott et al., 2016]



Conjecture (Bizon-Rostworowski 'l 1)

I. AdSg41 (d > 3) is unstable against black hole formation under arbitrarily small
perturbations.

2. There are perturbations for which turbulent energy transfer is not active (time- and
quasi-periodic solutions).

Einstein-Klein-Gordon system with A < 0 in spherical symmetry
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Linear scalar perturbations of AdS
* Linear equation on an AdS background [Ishibashi and Wald, 2004]

1

tan x

¢p+Lp=0, L=- Oy (tand_lmax)

This operator is essentially self-adjoint on # = L? ([0, 7/2); tan?~ 'z dx).

* Eigenvalues and eigenvectors of essentalilly self-adjoint operator L on Hilbert
space Hare (j =0,1,...)

wjz = (d+25)%, ej(x) =N; cos?x Pj(d/%l’d/z)(cos 2z),

* Nondispersive spectrum—nonlinear coupling of linear modes—resonances.
Eigenfrequencies are nondispersive when dw;/ dj = const, and dispersive in
the opposite case.

* Completely (fully) resonant when w; rational multiples of one another
(suggesting a large number of secular terms in non-linear perturbation theory).
Resonant spectrum is also defined as: 3 {k;| k; € N}, >, kiw; = 0.

* Appearance of resonances should be attributed to the structure of equations
not only to the frequency spectrum.



Resonant approximation
* Failure of naive perturbative approach
(b(ta l’) - E¢1(t7$) + €3¢3(ta l’) +o
Secular terms ¢(t,x) = e p1(t,z) +3t(...) + ...
* Resummation (with slow time T = %t dependence)
Cbl (t7 3;) = Z (aj (T)efiwjt 4 dj (T)eiwjt) e (.73),
j>0

* Resonant system (w; + w; £ wi, = fwy,)
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Invariant under: ., (1) — e L, (1/€2).

* Multiscale [Balasubramanian et al.,, 2014] , renormalization group [Craps et al., 2014]
(Ct== =0and C*T*+ =0for + — — and + + +) and averaging [Craps
etal, 2015] approaches. Slow long-time energy flow between the modes.

* We have shown that [Bizon,M&Rostworowski, 2015]

* this infinite system has a solution that becomes singular in finite time,
* singular solution governs generic blowup,



Qualitative comparison
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Resonant approximation—blowup

a0 [ Ly, ‘ 7+ Universal behavior a,, (1) = A, (1)e'Bm(7)

Am(T) ~ Tm717 Bm(T) /17

* Asymptotic ansatz (m > 1)

Ap(T) ~ m—v(f)e—p(f)m’

Analyticity strip method [Sulem et al., 1983] ,

0.010f° [Bizon and Jatmuzna, 2013] (AdSs).
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i + Solution for phases B, (7)?



Resonant approximation—blowup

0.45 046 047 048 049 050 051 0.52
T

Universal behavior a, (1) = A, (7)etBm(7)
A’"l(T) ~ Tm717 Bm(T) /l7
Asymptotic ansatz (m > 1)
A’ITL(T) ~ m_’Y(T)e_p(T)m’

Analyticity strip method [Sulem et al., 1983] ,
[Bizon and Jatmuzna, 2013] (AdS3).

Data fits

as 7T — T. (R 0.513 = 7p)

Solution for phases B, (7)?



Resonant approximation—blowup
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Resonant approximation—blowup and collapse
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Convergence with € — 0 (Einstein’s equation), and for N' — oo (truncated
resonant system).



Resonant approximation

* Method intended to provide uniformly bounded solution gives hints for
instability. Note || < 0o # || < 00, here (d = 4)

k—1
1
laj| < 00, but |a§k)\ ~ ( > , k>1,

Te —T
* Generalization of asymptotic 7 — 7, solutionto d > 4
Aj ~ j’ye_pjv Y= _d/25 p— Oa

which blows up in finite time 7,.. The character of blowup is oscillatory; i.e.
phases behave as (in the interior gauge)

B}(T) ~log(ry — 1), for d>4.

In boundary gauge blowup of higher derivatives. The d = 3 case?

* Energy spectra |a;| ~ j=%? = E; ~ j2~% Dimensional argument [Bizon
and Rostworowski, 20127] , also [Freivogel and Yang, 2015] .

* But not all data leads to unbounded growth of higher Sobolev type norms.



Resonant approximation—two-mode initial data

6(0,2) = <(n) (1eo(x> n ;61@:)) L d(0.2) =0,

Stability islands (of time-periodic solutions [M&Rostworowski, 2013] , [Kim, 2015] ,
[Fodor et al., 2015] 7)
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10
A . aj(r) = A7, By = c1j + e,
I ‘ . .
0.5F | e o Construction [Balasubramanian et al., 2014] ,
. : " - 0 stability [Green etal, 20|5] and. asymptoﬁcs
" [Craps et al, 2015] . What is their role in

dynamics of generic initial conditions?

The same story for wide gaussians [Buchel et al, 2013] , [M&Rostworowski, 2013] .



Conclusions and questions

Extend study of the resonant system. How to transfer blowup to the full
system? How to interpret oscillatory singularity? Choptuik's critical solution
[Choptuik, 1993] ?

Nontrivial (complicated) phase-space of solutions to the Einsteins equation

with negative cosmological constant. How large the islands of stability are?
Understand the role of stationary solutions in the dynamics [Green et al., 2015] .

Do we understand borderline between collapse and quasiperiodic motion?
Structure of resonances [Craps etal.,, 2014, 2015] and their impact on nonlinear
evolution; relaxed symmetry assumption—work in progress.

Clash between different numerical approaches ( [Balasubramanian et al., 2014] and
[Bizoh and Rostworowski, 2014] ) shows that long-time evolution of asymptotically
AdS solutions is particularly demanding.

Weak turbulence—common for (non-integrable) NWE on bounded domains
(NLS on torus [Colliander et al, 2010] , [Carles and Faou, 2012] ).

Challenging mathematical problems, both for any attempts to rigorous proofs
and numerical analysis. Meeting point of GR, theory of PDEs, turbulence, and
HEP which makes it an exciting field of research.



