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All or nearly all of the fastest spinning neutron stars 

we observe are not young stars but are instead old 

neutron stars that have been spun up by accretion 

from a companion.



The angular velocities of observed neutron stars 

show a cutoff below 800 Hz.  
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This limit on spin may be set by a gravitational-wave 

driven (CFS) instability of an r-mode – a perturbation 

of the fluid velocity

For old accreting stars, the

growth time b -1 is months 

or years. 

Animation by Chad Hanna
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At second-order in perturbation theory, 

radiation-reaction and quadratic terms in the 

perturbed Euler equation drive an  

exponentially growing differential rotation.
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The differential rotation winds up a background 

magnetic field
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And the growing magnetic field damps the 

r-mode instability when 
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Previous studies find damping of the instability 

in newborn stars with an initial B0 > 1010 G  

and damping or significant alteration of the 

unstable mode for old accreting neutron stars.  



Revisit: Two changes

1. Early studies of newborn neutron stars looked at proto-

neutron stars with large magnetic fields and assumed a   

large saturation amplitude (amplitude at which coupling 

to other modes stops the growth of the r-mode)

But a subsequent series of papers in 2nd-order perturbation 

theory finds 

(Arras, Bondarescu, Brink, Morsink, Teukolsky, Wasserman)

saturation with amplitude defined by
1
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2.  Include back-reaction of growing magnetic field 

on growth of differential rotation.

A 1012 G field is too small to change 

the shape or frequency of the linear r-mode.  
(Morsink, Rezania, ’02; Lee ’ 05, Glampedakis, Andersson ’ 07,S. Abbassi, M. 

Rieutord; Lander, Jones, Passamonti, Lander, D. I. Jones, and A. Passamonti, ’10, V. 

Rezania ’12, Chirenti and J. Sk´akala ’13) 

But including even an initial 108 G  has a 

dramatic effect on the maximum growth of 

differential rotation.
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To see this, first look at adding differential 

rotation to a rotating star.  

Because the perturbed star is a nearby equilibrium, 

the perturbation is time-independent.  



But for an equilibrium star with a magnetic field, 

adding initial differential rotation is a 

periodic perturbation: 

Field lines wind and unwind with timescale the 

Alfvén time, time for wave in magnetic field to cross 

neutron star

Here’s what happens in a toy model invented by 

Stuart Shapiro, the star represented by differentially 

rotating fluid in a cylinder with an initially radial 

magnetic field.  The solution is exact.
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http://research.physics.illinois.edu/cta/movies/MBRAKING/INCOMPR/evolution.html     
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Driven system: a dramatic difference between 

a driven mode with zero-frequency and 

a driven mode with nonzero frequency when 

A > b:

zero-frequency                      frequency A
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zero-frequency                      frequency A

A constant force gives              oscillates

constant acceleration               about saturation

value

After nonlinear saturation

Angular displacement now limited for a normal core to 

 < 2 saturation



This estimate may greatly overstate max because 

the Alfvén frequency of a type II superconductor is 

much higher: NS core is probably superconducting, 

with flux tubes carrying field Hc ~1016 G
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Conclusion

Observed magnetic fields in X-ray binaries and 

double neutron star systems older than 107 yr have 

B<1011 G.  

The differential rotation possible at that field size is 

too small to significantly alter the linear r-mode or to 

drive the field to 1012 G.

Caveats:  

Calculations done for a discrete spectrum and 

assuming no zero-frequency modes that wind up the 

magnetic field, and neglecting MRI instability.    





Details: 

Equation governing the 2nd order r-mode is

B is anti-self adjoint, C self-adjoint

and they do not commute.

With discrete modes, nevertheless have a spectral 

decomposition of the form

with the mode functions    normalized by a 

conserved symplectic product.
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The contribution from the nth mode is again of order

with 
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MHD Euler equation

Nonlinear perturbation: 
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The linear perturbation (r-mode) is an m=2 mode,

proportional to   
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MHD Euler equation

Nonlinear perturbation: 

The linear perturbation (r-mode) is an m=2 mode,

proportional to   
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and terms quadratic in the first-order perturbation are

a sum of  m=0 and  m=4 parts
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The nonlinear perturbation has an axisymmetric part:
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The axisymmetric part of the nonlinear r-mode is 

exponentially growing differential rotation:


