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The constraints:

e initial data: | (hj;, K;;) | on a codimension-one surface

e dim(X), sources, signature of the ambient space

YR+ (K°)? — K. KT =0

D.K® —D,K¢ =0

where D, denotes the covariant derivative operator associated with A

@ it is an underdetermined system: 4 equations for 12 variables
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Solving the constraints:

The conformal (elliptic) method Lichnerowicz A (1944) and York J W (1972):
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_ L
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The conformal (elliptic) method Lichnerowicz A (1944) and York J W (1972):

o replace h;; and K;; — % h;; K'; by Eij and f(ij as
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The conformal (elliptic) method Lichnerowicz A (1944) and York J W (1972):

o replace h;; and K;; — % h;; K'; by Eij and f(ij as

hij = ¢47Lij and Kij — %h” Kll = ¢_2 I?ij

using these variables the constraints are put into the semilinear elliptic system

°
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D'DiX; + L Di(D'X;) + Ri' X, — 2 ¢°Di(KY) = 0

° (hij, Kij)| +— (¢77Lij§KllaXivf('['TT]>

)

Istvan Récz (AEIl & Wigner RCP) constraints as evolutionary systems 13 July, 2016



Solving the constraints:

Any method should aim to provide
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Solving the constraints:

Any method should aim to provide
@ the highest possible flexibility in choosing h;; and Kj;
@ the largest possible control on the physical parameters of the to be solution

@ minimize the need to impose boundary conditions
e they influence solutions to elliptic equations everywhere in their support

The conformal method: impressive mathematical developments since 1944 but ...

@ either “constancy” of K'; or “smallness” of the TT part of I?ij is required

@ it is highly implicit due to its elliptic character and the replacements h;; = ot Eij
and Kij — l;hlJ Kll = (biQ Kij -

e no direct control on the physical parameters of the initial data specifications
o non-negligible spurious gravitational wave content of spacetimes evolved from
Bowen-York type initial data:  hj; is flat h;; = §;; and K'; =0

S

in-.
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@ either “constancy” of K'; or “smallness” of the TT part of I?ij is required

@ it is highly implicit due to its elliptic character and the replacements h;; = ot Eij
and Kij — l;hlJ Kll = (biQ Kij -

e no direct control on the physical parameters of the initial data specifications
o non-negligible spurious gravitational wave content of spacetimes evolved from
Bowen-York type initial data:  hi; is flat hi; = 6;; and K'; =0 KerrBH
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Constraints as evolutionary systems:

The constraints can be put into evolutionary systems:

@ momentum constraint as a first order symmetric hyperbolic system

@ Hamiltonian constraint as a parabolic or an algebraic equation

© in either case the coupled constraints comprise an evolutionary system
o (local) existence and uniqueness of solutions is guaranteed

e some global results apply for the hyperbolic-parabolic formulation

Some of the basic properties:

@ no conformal rescaling of h;; and Kj;

o for binary BHs an unprecedented complete control on the ADM parameters
@ free of using inner boundary conditions

e requires data for the constrained variables only on a surface surrounding the
binary BH system in the asymptotic region as values in the strong field regime
are then determined by integrating the evolutionary form of the constraints
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constraints as evolutionary systems

Assumptions on the topology of >::

@ Assume: there exists a smooth function p : ¥ — R such that the p = const
surfaces (denoted also by .#,) provide “a one-parameter foliation” of X.
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surfaces (denoted also by .#,) provide “a one-parameter foliation” of X.

@ This (apart from some isolated critical points) allows to define the normal
D;p to these level surfaces throughout X.
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e if Z origin in ¥ it may be given as a product space: ¥ ~ R x .7, where .¥ is
a 2-dimensional manifold of arbitrary topology
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Assumptions on the topology of >::

@ Assume: there exists a smooth function p : ¥ — R such that the p = const
surfaces (denoted also by .#,) provide “a one-parameter foliation” of X.

@ This (apart from some isolated critical points) allows to define the normal

D;p to these level surfaces throughout ¥. — nt = hiin;

e if Z origin in ¥ it may be given as a product space: ¥ ~ R x .7, where .¥ is
a 2-dimensional manifold of arbitrary topology

~j~

e — I projection to the p = const level surfaces: 4t = 6% — n'n;
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constraints as evolutionary systems

The “evolution vector field” in a 241 decomposition:

@ consider an 2-parameter family of smooth curves intersecting each of the .7,
level surfaces precisely once

@ ‘“evolution vector field” : tangent field to these curves scaled so that

P’ Djp=1 p'=pi +p =N + N

o the ‘lapse’ and ‘shift’ of |p’ = (9,)"  are defined as

‘]\A]:pjﬁj and Ni=7%,pl,

resp.
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Decompositions:

Consider an arbitrary symmetric tensor field
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Decompositions:

ider an arbitrary symmetric tensor field P,

e using ' and 4'; it can be decomposed as
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Decompositions:

Consider an arbitrary symmetric tensor field P;; on X :

e using ' and 4'; it can be decomposed as

Pij = ﬂh\i/ﬁj ar [ﬁz P; I /ﬁj pi] I Pij

ey _ ~k~l _ =kal
) where | =n"n' Py, p; =71 P, Pz‘j—%’Vijl

It is also rewarding to inspect the decomposition of the contraction D*P;;:
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Consider an arbitrary symmetric tensor field P;; on X :

e using ' and 4'; it can be decomposed as

Py = mnn; + [0 pj + 0y pil + Pij

° where |7 =7n*n! Py, p; =30 Pu, Py 7zVJPM

It is also rewarding to inspect the decomposition of the contraction D*P;;:

(D'Pp) " = Lam + D'py + [ (KY) — P K" — 27'p)]
(D Plk) gﬁpz + D Py + [( )pz + nz - ﬁ Pli]
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Decompositions:

Consider an arbitrary symmetric tensor field P;; on X :

e using ' and 4'; it can be decomposed as

Py = mnn; + [0 pj + 0y pil + Pij

_ okl _ 2kl
° where | =n"n" Py, p; =71 Py, Py % 7] Py

It is also rewarding to inspect the decomposition of the contraction D*P;;:

(D'Pp) " = Lam + D'py + [ (KY) — P K" — 27'p)]
(D Plk) gﬁpz + D Py + [( )pz + nz - ﬁ Pli]

° where |7m; = atDn; = —D; In N

(] and -[?ij = ;}/\li Dl ﬁj = %gﬁ:)/\” and ]’?ll = ;}/\”.l’?” = %:)/\”jﬁ:)/\”
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The new variables:

where

NS _ ok ol _ ok ol
K=n"n" Ky, ki =7"0n"Ky and K;; =7"7"; Ky
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where

NS _ ok ol _ ok ol
K=n"n" Ky, ki =7"0n"Ky and K;; =7"7"; Ky

o the trace and trace free parts of K;;

K'Y =4" Ky and Ki; = Ki; — 5 9;K'
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Constraints form evolutionary systems
The new variables:

where

NS _ ok ol _ ok ol
K=n"n" Ky, ki =7"0n"Ky and K;; =7"7"; Ky

o the trace and trace free parts of K;;

K'Y =4" Ky and Ki; = Ki; — 5 9;K'

o the pair | (hsj, K;j) | is represented by the variables

(Nvﬁiaaij;ﬁakivKllaf{ij)
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Constraints form evolutionary systems

The momentum constraint:

D.K¢, —D,K¢ =0
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The momentum constraint:

D.K¢, —D,K¢ =0

First order symmetric hyperbolic system:

Lk — l (Kll)—ﬁin—l—ﬁlfili—f—([/&ll)ki—i—nﬁi—ﬁl K;; =0 (1)

2

fﬁ(KZl)—ﬁlkl —Iﬁ',(l?ll)-i-KklI?kl—l—Zﬁl k; =0 (2)
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The momentum constraint:

D.K¢, —D,K¢ =0

First order symmetric hyperbolic system:

Lk — l (Kll)—ﬁin—l—ﬁlfili—f—([?ll)ki—i—nﬁi—ﬁl K;; =0 (1)

2

fﬁ(KZl)—Blkl —Iﬁ',(l?ll)-i-KklI?kl—l—Zﬁl k; =0 (2)

e contr. (1) with 2 N3 and mult. (2) with N, when writing them out in
coordinates (p,z?, 23), adopted to the foliation .#, and the vector field p’,
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Lk — l (Kll)—ﬁin—l—ﬁlfili—f—([?ll)ki—i—nﬁi—ﬁl K;; =0 (1)

2
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e contr. (1) with 2 N3 and mult. (2) with N, when writing them out in
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= k
Q,YAB 0 5. 4 —9 ‘]/YK ,YAB N’yAK 5 B . (@(ﬁ) 0
0 1 P -N aBK _NK K KEE «@(K)
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The momentum constraint:

D.K¢, —D,K¢ =0

First order symmetric hyperbolic system:

Lk — l (Kll)—ﬁin—l—ﬁlfili—f—([?ll)ki—i—nﬁi—ﬁl K;; =0 (1)

2

fﬁ(KZl)—Blkl —Iﬁ',(l?ll)-i-KklI?kl—l—Zﬁl k; =0 (2)

e contr. (1) with 2 N3 and mult. (2) with N, when writing them out in
coordinates (p,z?, 23), adopted to the foliation .#, and the vector field p’,

= k
AB VK SAB SAK B BA
(27 O)a . QJXABK N3 o +< (k)> P
0 —N7~ —N KEZ, B k)
@ a first order symmetric hyperbolic system for the vector valued variable

(kp, KFp)T

where the ‘radial coordinate’ p plays the role of ‘time’.
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The Hamiltonian constraint:

The Hamiltonian constraint in new dress:

YR+ (K°.)? — Koy Ko =0

Istvdan Récz (AEIl & Wigner RCP)

constraints as evolutionary systems

13 July, 2016

11/ 12



Constraints form evolutionary systems
The Hamiltonian constraint:

The Hamiltonian constraint in new dress:

YR+ (K°.)? — Koy Ko =0

using | "R=R— {2 Lr(RY) + (RY)? + RuR™ + 2N—1f)’f)lﬁ}

R denotes the scalar curvature of Vij
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