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The constraints:

initial data: (hij ,Kij) on a codimension-one surface Σ

dim(Σ), sources, signature of the ambient space
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where Da denotes the covariant derivative operator associated with hab

it is an underdetermined system: 4 equations for 12 variables
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Solving the constraints:

The conformal (elliptic) method Lichnerowicz A (1944) and York J W (1972):

replace hij and Kij − 1
3 hij K

l
l by h̃ij and K̃ij as

hij = φ4 h̃ij and Kij − 1
3 hij K

l
l = φ−2 K̃ij

using these variables the constraints are put into the semilinear elliptic system
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ij , where K̃

[L]
ij =

(
D̃iXj + D̃jXi − 2

3 h̃ijD̃
lXl

)
D̃lD̃lXi + 1

3 D̃i(D̃
lXl) + R̃i

lXl − 2
3 φ

6D̃i(K
l
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Solving the constraints:
Any method should aim to provide

the highest possible flexibility in choosing hij and Kij

the largest possible control on the physical parameters of the to be solution

minimize the need to impose boundary conditions
they influence solutions to elliptic equations everywhere in their support

The conformal method: impressive mathematical developments since 1944 but ...

either “constancy” of Kl
l or “smallness” of the TT part of K̃ij is required

it is highly implicit due to its elliptic character and the replacements hij = φ4 h̃ij
and Kij − 1

3
hij K

l
l = φ−2 K̃ij =⇒

no direct control on the physical parameters of the initial data specifications
non-negligible spurious gravitational wave content of spacetimes evolved from
Bowen-York type initial data: h̃ij is flat h̃ij = δij and Kl

l = 0

((((Kerr BH

Σ

Sout

Sin
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Constraints as evolutionary systems:

Outline:

The constraints can be put into evolutionary systems:

1 momentum constraint as a first order symmetric hyperbolic system

2 Hamiltonian constraint as a parabolic or an algebraic equation

3 in either case the coupled constraints comprise an evolutionary system

(local) existence and uniqueness of solutions is guaranteed

some global results apply for the hyperbolic-parabolic formulation

Some of the basic properties:

no conformal rescaling of hij and Kij

for binary BHs an unprecedented complete control on the ADM parameters

free of using inner boundary conditions

requires data for the constrained variables only on a surface surrounding the
binary BH system in the asymptotic region as values in the strong field regime
are then determined by integrating the evolutionary form of the constraints
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constraints as evolutionary systems

Assumptions on the topology of Σ:

Assume: there exists a smooth function ρ : Σ→ R such that the ρ = const
surfaces (denoted also by Sρ) provide “a one-parameter foliation” of Σ.

This (apart from some isolated critical points) allows to define the normal

Diρ to these level surfaces throughout Σ.

=⇒ n̂i ∼ Diρ n̂i = hij n̂j

Σ

Σ

n

n

n

Σ

i

i

i

n
i

ni

ni

ni

ni

n
i

if �∃ origin in Σ it may be given as a product space: Σ ≈ R×S , where S is
a 2-dimensional manifold of arbitrary topology

=⇒ ∃ projection to the ρ = const level surfaces: γ̂ij = δij − n̂in̂j
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constraints as evolutionary systems

The “evolution vector field” in a 2+1 decomposition:

consider an 2-parameter family of smooth curves intersecting each of the Sρ

level surfaces precisely once

“evolution vector field” ρi : tangent field to these curves scaled so that

ρjDjρ = 1

ρi = ρi⊥ + ρi‖ = N̂ n̂i + N̂ i

the ‘lapse’ and ‘shift’ of ρi = (∂ρ)
i are defined as

N̂ = ρj n̂j and N̂ i = γ̂ ij ρ
j , resp.
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István Rácz (AEI & Wigner RCP) constraints as evolutionary systems 13 July, 2016 7 / 12



constraints as evolutionary systems

The “evolution vector field” in a 2+1 decomposition:

consider an 2-parameter family of smooth curves intersecting each of the Sρ

level surfaces precisely once

“evolution vector field” ρi : tangent field to these curves scaled so that

ρjDjρ = 1

ρi = ρi⊥ + ρi‖ = N̂ n̂i + N̂ i

the ‘lapse’ and ‘shift’ of ρi = (∂ρ)
i are defined as

N̂ = ρj n̂j and N̂ i = γ̂ ij ρ
j , resp.

Σ

Σ

ρi ρi

ρi

ρi

iρ

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

Σ

N

Nn
i

ρi ρi

ρi

ρi

iρ

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

i
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constraints as evolutionary systems

Decompositions:

Consider an arbitrary symmetric tensor field Pij on Σ :

using n̂i and γ̂ij it can be decomposed as

Pij = π n̂in̂j + [n̂i pj + n̂j pi] + Pij

where π = n̂kn̂l Pkl, pi = γ̂ki n̂
l Pkl, Pij = γ̂ki γ̂

l
j Pkl

It is also rewarding to inspect the decomposition of the contraction DiPij :

(DlPlk) n̂k = Ln̂π + D̂lpl + [π (K̂l
l)−PklK̂

kl − 2 ˙̂nlpl]

(DlPlk) γ̂ki = Ln̂pi + D̂lPli + [(K̂l
l)pi + ˙̂ni π − ˙̂nlPli]

where ˙̂ni = n̂lDln̂i = −D̂i ln N̂

and K̂ij = γ̂liDl n̂j = 1
2 Ln̂γ̂ij and K̂l

l = γ̂ijK̂ij = 1
2 γ̂

ijLn̂γ̂ij
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István Rácz (AEI & Wigner RCP) constraints as evolutionary systems 13 July, 2016 8 / 12



constraints as evolutionary systems

Decompositions:

Consider an arbitrary symmetric tensor field Pij on Σ :

using n̂i and γ̂ij it can be decomposed as

Pij = π n̂in̂j + [n̂i pj + n̂j pi] + Pij

where π = n̂kn̂l Pkl, pi = γ̂ki n̂
l Pkl, Pij = γ̂ki γ̂

l
j Pkl

It is also rewarding to inspect the decomposition of the contraction DiPij :

(DlPlk) n̂k = Ln̂π + D̂lpl + [π (K̂l
l)−PklK̂

kl − 2 ˙̂nlpl]

(DlPlk) γ̂ki = Ln̂pi + D̂lPli + [(K̂l
l)pi + ˙̂ni π − ˙̂nlPli]

where ˙̂ni = n̂lDln̂i = −D̂i ln N̂

and K̂ij = γ̂liDl n̂j = 1
2 Ln̂γ̂ij and K̂l

l = γ̂ijK̂ij = 1
2 γ̂

ijLn̂γ̂ij
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Constraints form evolutionary systems

The new variables:

The splitting of hij and Kij :

hij = γ̂ij + n̂in̂j , n̂i = N̂−1
[
(∂ρ)

i − N̂ i
]

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

where

κ = n̂kn̂lKkl , ki = γ̂kin̂
lKkl and Kij = γ̂kiγ̂

l
j Kkl

the trace and trace free parts of Kij

Kl
l = γ̂klKkl and

◦
Kij = Kij − 1

2 γ̂ijK
l
l

the pair (hij ,Kij) is represented by the variables

(N̂ , N̂ i, γ̂ij ;κ,ki,K
l
l,
◦
Kij)
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István Rácz (AEI & Wigner RCP) constraints as evolutionary systems 13 July, 2016 9 / 12



Constraints form evolutionary systems

The new variables:

The splitting of hij and Kij :

hij = γ̂ij + n̂in̂j , n̂i = N̂−1
[
(∂ρ)

i − N̂ i
]

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

where

κ = n̂kn̂lKkl , ki = γ̂kin̂
lKkl and Kij = γ̂kiγ̂

l
j Kkl

the trace and trace free parts of Kij

Kl
l = γ̂klKkl and

◦
Kij = Kij − 1

2 γ̂ijK
l
l

the pair (hij ,Kij) is represented by the variables

(N̂ , N̂ i, γ̂ij ;κ,ki,K
l
l,
◦
Kij)
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Constraints form evolutionary systems

The momentum constraint:

DeK
e
a −DaK

e
e = 0

First order symmetric hyperbolic system:

Ln̂ki − 1
2D̂i(K

l
l)− D̂iκ + D̂l ◦Kli + (K̂l

l)ki + κ ˙̂ni − ˙̂nlKli = 0 (1)

Ln̂(Kl
l)− D̂lkl − κ (K̂l

l) + KklK̂
kl + 2 ˙̂nl kl = 0 (2)

contr. (1) with 2 N̂ γ̂ij and mult. (2) with N̂ , when writing them out in
coordinates (ρ, x2, x3), adopted to the foliation Sρ and the vector field ρi,

{(
2 γ̂AB 0

0 1

)
∂ρ +

(
−2 N̂K γ̂AB −N̂ γ̂AK

−N̂ γ̂BK −N̂K

)
∂K

} kB

KE
E

+

(
BA

(k)

B(K)

)
= 0

a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’.

István Rácz (AEI & Wigner RCP) constraints as evolutionary systems 13 July, 2016 10 / 12



Constraints form evolutionary systems

The momentum constraint:

DeK
e
a −DaK

e
e = 0

First order symmetric hyperbolic system:

Ln̂ki − 1
2D̂i(K

l
l)− D̂iκ + D̂l ◦Kli + (K̂l

l)ki + κ ˙̂ni − ˙̂nlKli = 0 (1)

Ln̂(Kl
l)− D̂lkl − κ (K̂l

l) + KklK̂
kl + 2 ˙̂nl kl = 0 (2)

contr. (1) with 2 N̂ γ̂ij and mult. (2) with N̂ , when writing them out in
coordinates (ρ, x2, x3), adopted to the foliation Sρ and the vector field ρi,

{(
2 γ̂AB 0

0 1

)
∂ρ +

(
−2 N̂K γ̂AB −N̂ γ̂AK

−N̂ γ̂BK −N̂K

)
∂K

} kB

KE
E

+

(
BA

(k)

B(K)

)
= 0

a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’.
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contr. (1) with 2 N̂ γ̂ij and mult. (2) with N̂ , when writing them out in
coordinates (ρ, x2, x3), adopted to the foliation Sρ and the vector field ρi,{(

2 γ̂AB 0
0 1

)
∂ρ +

(
−2 N̂K γ̂AB −N̂ γ̂AK

−N̂ γ̂BK −N̂K

)
∂K

} kB

KE
E

+

(
BA

(k)

B(K)

)
= 0

a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’.
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Constraints form evolutionary systems

The Hamiltonian constraint:

The Hamiltonian constraint in new dress:

(3)

R+ (Ke
e)

2 −KefK
ef = 0

using
(3)

R = R̂−
{

2 Ln̂(K̂l
l) + (K̂l

l)
2 + K̂klK̂

kl + 2 N̂−1D̂lD̂lN̂
}

R̂ denotes the scalar curvature of γ̂ij

R̂−
{

2 Ln̂(K̂l
l) + (K̂l

l)
2 + K̂kl K̂

kl + 2 N̂−1D̂lD̂lN̂
}

+ 2κKl
l + 1

2 (Kl
l)
2 − 2klkl −

◦
Kkl

◦
Kkl = 0

The two alternative choices yielding evolutionary systems for coupled constraints:

it is a parabolic equation for N̂ :

n̂i = N̂−1[ ρi − N̂ i ]

K̂l
l = γ̂ij K̂ij = N̂−1[ 1

2
γ̂ijLργ̂ij − D̂jN̂

j ] = N̂−1
?
K

it is an algebraic equation for κ :

eliminate D̂iκ from the momentum constraint
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Summary and final remarks

Summary:

Tha basic results:

the constraints can be put into evolutionary systems:

1 momentum constraint as a first order symmetric hyperbolic system

2 the Hamiltonian constraint as a parabolic or an algebraic equation

3 in either case the coupled constraints comprise an evolutionary system

a parabolic-hyperbolic or a strongly hyperbolic system CQG (2016)

(local) existence and uniqueness of solutions is guaranteed CQG (2016)

some global results apply for the hyperbolic-parabolic formulation CQG (2016)

Final remarks:

hyperbolicity and causality:

consider a Riemannian metric: hij and a unit norm v.f.: n̂i

ȟij = hij − 2 n̂in̂j

the most important open issue: global existence and uniqueness ???

Thanks for your attention
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István Rácz (AEI & Wigner RCP) constraints as evolutionary systems 13 July, 2016 12 / 12



Summary and final remarks

Summary:

Tha basic results:

the constraints can be put into evolutionary systems:

1 momentum constraint as a first order symmetric hyperbolic system

2 the Hamiltonian constraint as a parabolic or an algebraic equation

3 in either case the coupled constraints comprise an evolutionary system

a parabolic-hyperbolic or a strongly hyperbolic system CQG (2016)

(local) existence and uniqueness of solutions is guaranteed CQG (2016)

some global results apply for the hyperbolic-parabolic formulation CQG (2016)

Final remarks:

hyperbolicity and causality: consider a Riemannian metric: hij and a unit norm v.f.: n̂i
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