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Introduction

• Spherically symmetric metric in comoving coordinates with t “cosmic time”:

• Proper time and proper distance operators:

• Perfect Fluid: 

• Constraint equation (integrating G00) :

• Mister-Sharp Mass :
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Black Hole / Cosmological horizon :                           

Trapping Horizons

R = 2M
The horizon condition is independent of the 
slicing and holds also within a non-vacuum 
moving medium

The so-called apparent horizon of a black hole (which is a future trapping horizon) 
is the outermost trapped surface for outgoing radial null rays while the trapping 
horizon for an expanding universe (which is a past trapping horizon) is foliated by 
the innermost anti-trapped surfaces for ingoing radial null rays.

Expansion of  ingoing/outgoing null-rays :
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α > 0  :  space-like

α = 0 /     :  null

α < 0  :  time-like
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Causal Nature
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Lie Derivatives:
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3-velocity of the horizon with respect the matter: vH ⌘
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|vH | > 1: space-like

|vH | = 1: null

|vH | < 1: time-like

Horizon Velocity
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May & White (1966) 

Homogenous initial density 
 

p = K⇢� (� = 5/3,K = 0.05)



General scheme for in/out-going horizon evolution
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Oppenheimer-Snyder collapse
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LTB collapse (zero pressure)
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Causal Nature Summary 
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Black Hole Horizons(quantum region)



Conclusions & Future perpectives
• With the Misner-Sharp equations (cosmic time slicing) we have studied the causal 

nature of trapping horizons appearing in gravitational collapse for polytropic stars 
forming black holes using a spherically symmetric Lagrangian numerical code. 

• Within the classical regime of GR we have observed space-like outgoing 
horizons and space-like/time-like ingoing horizons depending on the choice of 
the equations of state and initial conditions. Pressure seems to play a key role! 

• The conditions of horizon formation and annihilation are independent of the 
initial conditions: 

• The formalism developed seems to show the possibility of incorporating quantum 
effects within the classical formulation of the GR-hydro equations modifying the 
equation of state accordingly to quantum gravity.  

Can we get a bounce instead of a singularity? 
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Penrose Diagram of Gravitational 
Collapse with pressure 

 



COSMIC TIME

Tµ⌫ = (e + p)uµu⌫ � pgµ⌫
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• Proper time / space derivative

• 4-velocity & Lorentz factor

• Euler equation

• Continuity equation

• Mass conservation

• Lapse equation / pressure gradients

• Constraint equation

dM = aUdt+ b�dr



Equation of State

• Barotropic fluid (no rest mass density):                         with 

- radiation dominated era:

- matter dominated era:                  

• Polytropic fluid:                               

- If the fluid is adiabatic (no entropy change):                        (constant)

rest mass density

specific internal energy (velocity dispersion)

w = 1/3

adiabatic index - particle degree of freedom

w = 0

p = we w 2 [0, 1]

p = K(s)⇢�

K(s) = K
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energy density: pressure:e = ⇢(1 + ✏)
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p = K⇢� (� = 5/3,TOV I.C.)
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