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Black holes

• Black holes most likely exist.

• Very heavy, and compact, objects seem to reside at the
center of most galaxies.

• In the next decade or so, VLBIs will be able to resolve the
center of galaxies.

• It is therefore an excellent time to consider alternatives to
the paradigmatical Kerr black holes of Einstein’s general
relativity.
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Black hole uniqueness

• There exist a plethora of no-hair theorems.

• And black hole solutions that evade those theorems in a
variety of manners.

• Most of those black holes have little to do with astrophysics.
• See review by Herdeiro and Radu from 2015.
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An example of a no-scalar-hair theorem

• For a Lagrangian of the form:

L =
1

4
R− 1

2
∇aΦ∇aΦ− V (Φ) ,

• with the following assumptions:

1 minimally coupled scalar field,
2 traditional energy conditions on V ,
3 scalar field inherits the isometries of the metric.
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Kerr black holes with scalar hair
(KBHsSH)

• By violating assumption 3, we find black hole solutions that
are:

• asymptotically flat,
• regular on and outside an event horizon,
• continuously connected to Kerr black holes,
• and possess an independent scalar charge.

• Violate the assumption such that Tab has the same
isometries as the metric.

• Kerr black holes with scalar hair [Herdeiro, Radu 2014]
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Boson stars
• Boson stars are horizonless self-gravitating solitons
described by the Einstein-Klein-Gordon equations. [Kaup 1968;
Ruffini, Bonazzola 1969]

• Can be thought of as the balance between the dispersion
and the self-gravity of the scalar field.

• We are interested in rotating solutions and they can be
described by the following metric and field ansatz:

ds2 = −e2F0dt2+e2F1
(
dr2 + r2dθ2

)
+e2F2r2 sin2 θ (dϕ−Wdt)2 ,

Φ = φ(r, θ)ei(mϕ−wt)

• They are only preserved by a single helicoidal Killing vector
field:

∂

∂t
+
w

m

∂

∂ϕ
• They have a conserved Noether-charge, Q, and for boson
stars J = mQ, where J is the angular momentum of the
boson star.
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Linear analysis: Klein-Gordon equation

• If one considers the Klein-Gordon in the background of
Kerr spacetime with the following solution ansatz,

Φ = e−iwteimϕS`m(θ)R`m(r).

• One finds the Teukolsky equation [Teukolsky 1972; Brill et al. 1972]

• which yields quasi-bound states.
• I.e., w = wR + iwI . Where a critical frequency, wc = mΩH ,
exists such that

• wR > wc → wI < 0 and the field decays. [Degollado et al. 2012]
• wR < wc → wI > 0 and we find superradiant states, i.e.

states that grow with time. [Press, Teukolsky 1972; Degollado,
Herdeiro 2014]

• At the threshold of the superradiant states, wR = wc, we
find true bound states: scalar-clouds. [J. Degollado, C. Herdeiro,

HR . . . to appear . . . ]
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Kerr black holes with scalar hair
• It is “simple” to inject a black hole to the center of a boson
star:

ds2 = −e2F0Ndt2+e2F1

(
dr2

N
+ r2dθ2

)
+e2F2r2 sin2 θ (dϕ−Wdt)2 ,

where N = 1− rH
r .

• We find the solutions numerically
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Self-interacting scalar hair
C. Herdeiro, E. Radu, HR, PRD 92, 084059 (2015)

• Self-interacting boson stars have been shown to alleviate
the astrophysically low masses of mini boson stars [Colpi et al
(1986); Ryan (1996)].

• By adding positive φ4 self-interactions to the scalar field,
we found generalizations of KBHsSH.

• These solutions can be more massive than the
non-self-interacting ones.

• However, this increase in mass comes solely from the scalar
field and not the central black hole.

• Therefore, these solutions are “hairier but not heavier”.
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• Since Proca fields can “suffer” from superradiance around
Kerr black holes and rotating Proca stars have been shown
to exist [Brito, Cardoso, Herdeiro, Radu (2015)]

• we expect Kerr black holes with Proca hair (KBHsPH) to
exist.

• We did indeed find such solutions.
• Their properties are very similar to those of KBHsSH.
• One notable difference is that their energy densities possess
a second local maximum.



Introduction Kerr black holes with scalar hair Phenomenology Conclusions
Shadows Generalizations

Proca hair
C. Herdeiro, E. Radu, HR, (2016)

• Since Proca fields can “suffer” from superradiance around
Kerr black holes and rotating Proca stars have been shown
to exist [Brito, Cardoso, Herdeiro, Radu (2015)]

• we expect Kerr black holes with Proca hair (KBHsPH) to
exist.

• We did indeed find such solutions.
• Their properties are very similar to those of KBHsSH.
• One notable difference is that their energy densities possess
a second local maximum.



Introduction Kerr black holes with scalar hair Phenomenology Conclusions
Shadows Generalizations

Proca hair
C. Herdeiro, E. Radu, HR, (2016)

• Since Proca fields can “suffer” from superradiance around
Kerr black holes and rotating Proca stars have been shown
to exist [Brito, Cardoso, Herdeiro, Radu (2015)]

• we expect Kerr black holes with Proca hair (KBHsPH) to
exist.

• We did indeed find such solutions.

• Their properties are very similar to those of KBHsSH.
• One notable difference is that their energy densities possess
a second local maximum.



Introduction Kerr black holes with scalar hair Phenomenology Conclusions
Shadows Generalizations

Proca hair
C. Herdeiro, E. Radu, HR, (2016)

• Since Proca fields can “suffer” from superradiance around
Kerr black holes and rotating Proca stars have been shown
to exist [Brito, Cardoso, Herdeiro, Radu (2015)]

• we expect Kerr black holes with Proca hair (KBHsPH) to
exist.

• We did indeed find such solutions.
• Their properties are very similar to those of KBHsSH.

• One notable difference is that their energy densities possess
a second local maximum.



Introduction Kerr black holes with scalar hair Phenomenology Conclusions
Shadows Generalizations

Proca hair
C. Herdeiro, E. Radu, HR, (2016)

• Since Proca fields can “suffer” from superradiance around
Kerr black holes and rotating Proca stars have been shown
to exist [Brito, Cardoso, Herdeiro, Radu (2015)]

• we expect Kerr black holes with Proca hair (KBHsPH) to
exist.

• We did indeed find such solutions.
• Their properties are very similar to those of KBHsSH.
• One notable difference is that their energy densities possess
a second local maximum.



Introduction Kerr black holes with scalar hair Phenomenology Conclusions
Shadows Generalizations

Proca hair
C. Herdeiro, E. Radu, HR, (2016)

 0

 0.5

 1

 1.5

 0.8  0.9  1

M
µ

w/(mµ)

m=1

Kerr black holes

KBHsPH

Proca stars
I

III

IV

V

 0

 0.5

 1

 1.5

 0.8  0.9  1

M
µ

w/(mµ)

m=1

Kerr black holes

KBHsPH

Proca stars
I

III

IV

V

 0

 0.0005

 0.001

 0.0015

-1  0  1  2

T
νν -2

T
tt

log10(r)

θ= π/2 

θ= π/4

θ= 0

ev
en

t h
or

iz
on



Introduction Kerr black holes with scalar hair Phenomenology Conclusions
Shadows Generalizations

Kerr-Newman black holes with scalar hair
J. Delgado, C. Herdeiro, E. Radu, HR, . . . to appear . . . (2016)

• We have found electrically charged solutions.

• Kerr-Newman black holes with gauged/ungauged scalar
hair.

• We have found that for certain configurations, the scalar
hair suppresses properties of the central black hole.

• For example, the gyromagnetic ratio of these configurations
is g < 2, only reaching the limit for vanishing hair.
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Conclusions

• Kerr black holes can support scalar hair in classical general
relativity.

• Their phenomenology can be quite distinct as compared to
their Kerr black hole counterparts.

• We have already found generalizations of these black holes:

• a scalar field with self-interactions, i.e. V (Φ) = µ2Φ2 + . . ..
We have already considered ∼ Φ4 and ∼ Φ6 terms [C. Herdeiro,
E. Radu, HR (2015)].

• scalar field and black hole possess an electric charge [J.
Delgado, C. Herdeiro, E. Radu, HR. . . to appear . . . ]

• consider other fields, such as Proca fields. [C. Herdeiro, E. Radu,
HR (2016)]

• These generalizations hint of a more general mechanism
where the “synchronization condition” w = mΩH generates
hairy black holes.
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Future work

• Repeat shadow work for the generalizations. More
astrophysically relevant light sources have been explored
[Vincent et al (2016); Ni et al (2016)]

• Perform time evolutions of these solutions to study their
stability and dynamics (e.g. collisions).
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