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Discreteness + Lorentz Invariance ⇒ Non-locality
A causal set is a locally finite, partially ordered set. For our purposes
you can think of it as a concrete model of a discrete Lorentz invariant
spacetime.

Marrying discreteness with LI needs kinematic randomness. This leads to a
radical form of nonlocality.
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Causal Set d’Alembertians (R.Sorkin, F.Dowker, DB, L.Glaser)

A concrete example of how nonlocality may affect physics on a causet is
given by discrete analogue of �:

Lattice � = finite difference equation between nearest neighbours

But NN in which sense? To preserve LI need NN in all frames: treat all NN
equally.

Following these guidelines one can construct (retarded) causet
d’Alembertians in all dimensions

B(d)
xy =

1

l2

{
ad x = y

bdfd(n(x, y)) y ≺ x

Dynamics of, say, a scalar field φ would then be defined by

Bφx =
∑
y≺x

Bxyφy =
1

l2

(
adφx + bd

∑
y≺x

fd(n(x, y))φy

)
= 0.

Assuming fundamental dynamics given by B leads to effective, nonlocal
dynamics in the continuum...



Continuum Nonlocal Field Theory (A. Belenchia, S.Liberati, DB; M.Saravani, S.Aslanbeigi)

Causet d’Alembertians lead to effective nonlocal continuum dynamics:

�̃(d)φ(x) =
1

l2n

(
adφ(x) +

bd
ldn

∫
J−(x)

ddy
√
−g fd(Vxy/ldn) e−Vxy/l

d
nφ(y)

)

Note: (1) �̃→ � as ln → 0, (2) ln ≥ l.

Can construct nonlocal QFTs based on these operators. QFT properties
determined by singularity structure of (momentum space) Green function.

R

F

iW(x,y)

iW(y,x)

A continuum of massive modes k2 < 0 con-
tribute to 2-point function

W (x−y) = W0(x−y)+

∫ ∞
0

dµ2ρ(µ2)Wµ(x−y)

W0 and Wµ are Wightman functions of
local, massless and massive fields respec-
tively. ρ is spectral density function de-
termined by choice of �̃.



Unruh-DeWitt Detectors Coupled to Nonlocal Fields (A. Belenchia, DB, E.

Martin-Martinez, M.Saravani)

Response of an UDW detector with gap Ω := E2 − E1 coupled to a scalar
field in its vacuum state is

F(Ω, T ) =

∫ ∞
−∞
dτ

∫ ∞
−∞
dτ ′e−iΩ∆τW (∆τ)χ

( τ
T

)
χ
(τ ′
T

)
For a nonlocal field this picks up two contributions

F(Ω, T ) = F0(Ω, T ) +

∫ ∞
0

dµ2ρ(µ2)Fµ(Ω, T )

where F0 and Fµ are the responses for local massless and massive fields
respectively.

For an inertial detector, and a field theory with ρ(µ2) that decays
exponentially fast as µ→∞ and goes like ρ ≈ l2n as µ→ 0, e.g.

ρ(µ2) = l2ne
−αl2nµ

2

, in the regime Ω < 0, |Ω|T � 1

∆ :=
F(Ω, T )− F0(Ω, T )

F0(Ω, T )
≈ |Ω|2l2n



A Concrete Experimental Setup

Can this deviation from local physics be detected in a lab?

If the experimenter has the ability to repeat the experiment ∼ 109times
then it will be able to distinguish the two probability distributions with
∆ ∼ 10−10. For Ω ∼ 1022Hz this would cast a bound on ln . 10−19m (∼
LHC bound). Is this far fetched?

Since we are analysing process of spontaneous emission we could potentially
have large number of events. Consider for example 20

11Na which has a
half-life of ∼500ms, decays into EM excited, highly unstable 20

10Ne which
then decays to its ground state emitting ∼11MeV γ-radiation, i.e.
|Ω| ∼ 10MeV.

200g of 20
11Na would therefore give Nγ ∼ 1025 after just t ∼ 10s. This

number of events would allow for an experimentally detectable relative
response of order ∆ ∼ 10−23 (assuming 0.1% detector efficiency), which in
turn implies that the experiment could detect nonlocality scales ln . 10−25

m, many orders of magnitude better than the resolution of the LHC!!

Note: 20
11Na is just one example. There are more than a dozen nuclear

species that provide a reliable source of spontaneous emission of gamma
rays which may turn out to be better suited to concrete experimental
setups...


