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The Hamiltonian Approach to Cosmology 

A Simple Scenario: Canonical, Minimal Scalar Fields 
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The Basics
We want to construct a Hamiltonian - we need a time! 

3 + 1 decomposition 

ADM formalism 

In Cosmology there is a natural choice of time 

Frame where CMB is homogeneous and 
isotropic (no dipole)



Hamiltonian 
Flow Vector

A geometric representation of 
Hamilton’s equations

2.2 The Conjugate Momenta and Hamiltonian

Once the minisuperspace Lagrangian has been calculated the conjugate momenta of � and
a, so p� and pa respectively, are given by:

p� =
@L

@�̇
=

a3
⇣
�̇� 3H@�⌦(�)

⌘

Nlapse
(2.6)

pa =
@L

@ȧ
=

�3a2
⇣
2H⌦(�) + �̇@�⌦(�)

⌘

Nlapse
(2.7)

This is just a system of linear equations and so �̇ and H can be re-written in terms of the
momenta. The Hamiltonian of the theory is given in the usual way as:

H =
X

q̇ipi � L (2.8)

In this case, written in terms of �̇ and H:

H =
�a3(t)

⇣
6⌦(�)H2 + 6�̇@�⌦(�)H + 2V (�)Nlapse

2 � �̇2
⌘

2Nlapse
(2.9)

or, in terms of momenta:

H = Nlapse

0

@a3V (�) +
6⌦(�)p�

2 � a2pa
2 � 6@�⌦(�)pap�

6a3
⇣
[3@�⌦(�)]

2 + 2⌦(�)
⌘

1

A (2.10)

The Hamiltonian constraint then gives the Friedmann equation, equation (2.11), defining a
3-dimensional surface in phase space.

2NlapseV (�) + �̇2 = 6H2⌦(�) + 6H�̇@�⌦(�) (2.11)

It is important that the Friedmann equation should be independent of a in the ‘special
coordinate system’ of �,�̇ and H. This means that it is possible to write H in terms of �
and �̇ alone and so eliminate H from any later expressions. In geometrical terms, the two
dimensional Hamiltonian constraint surface in the space of (�, �̇, H), Ca? , is the same for
all possible values of a? so that, as in the case of Remmen and Carroll, it is found that the
full constraint surface, C, factorises as a product: C = Ca? ⇥ R+. The shape of Ca? for a
particular case is shown in Figure 1.

2.3 Calculating the Hamiltonian Flow Vector

From the Hamiltonian the Hamiltonian flow vector, equation (2.12), can be constructed.
This defines a vector field giving a geometric way to visualise Hamilton’s equations. The key
idea of Remmen and Carroll is to express this vector in a way so that the components do not
depend on a and so it is eliminated from the dynamics of the universe.

XH =
@H

@pi

@

@qi
� @H

@qi
@

@pi
(2.12)
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Tangent to the trajectory 
through phase space



Hamiltonian Constraint



Vector 
Field 

Invariant 
Maps

"The images of integral curves that are distinct under a vector invariant map 
do not intersect. Therefore,given two integral curves in M, not mapped onto 
each other in N, their images cannot intersect." 

Remmen and Carroll, Attractor solutions in scalar-field cosmology, arXiv: 1309.2611

Creating an effective
phase space
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Hamilton’s Equations
@H

@q↵
= �ṗ↵ (1.1)

@H

@p↵
= q̇↵ (1.2)

Symplectic Form

! =
X

i

dqi ^ dpi (1.3)

Poisson Bracket’s of Canonical Coordinates

{qi, qj} = 0 (1.4)
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Hamiltonian Constraint
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A Simple Scenario



What is simple?
Flat, homogeneous, isotropic 

Originally inspired by background dynamics 
during inflation 

No fun. GR and canonical scalar field

As presented in Remmen and Carroll, arXiv: 1309.2611

Contents

1 Equations

Hamilton’s Equations
@H

@q↵
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What do we do?

As presented in Remmen and Carroll, arXiv: 1309.2611

Hamiltonian

Apply the Hamiltonian Constraint

Calculate the Hamiltonian Flow Vector

Reparametrize in terms of "special coordinates" 

2.2 The Conjugate Momenta and Hamiltonian

Once the minisuperspace Lagrangian has been calculated the conjugate momenta of � and
a, so p� and pa respectively, are given by:

p� =
@L

@�̇
=

a3
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�̇� 3H@�⌦(�)

⌘

Nlapse
(2.6)
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This is just a system of linear equations and so �̇ and H can be re-written in terms of the
momenta. The Hamiltonian of the theory is given in the usual way as:

H =
X

q̇ipi � L (2.8)

In this case, written in terms of �̇ and H:

H =
�a3(t)

⇣
6⌦(�)H2 + 6�̇@�⌦(�)H + 2V (�)Nlapse

2 � �̇2
⌘

2Nlapse
(2.9)

or, in terms of momenta:

H = Nlapse

0

@a3V (�) +
6⌦(�)p�

2 � a2pa
2 � 6@�⌦(�)pap�

6a3
⇣
[3@�⌦(�)]

2 + 2⌦(�)
⌘

1

A (2.10)

The Hamiltonian constraint then gives the Friedmann equation, equation (2.11), defining a
3-dimensional surface in phase space.

2NlapseV (�) + �̇2 = 6H2⌦(�) + 6H�̇@�⌦(�) (2.11)

It is important that the Friedmann equation should be independent of a in the ‘special
coordinate system’ of �,�̇ and H. This means that it is possible to write H in terms of �
and �̇ alone and so eliminate H from any later expressions. In geometrical terms, the two
dimensional Hamiltonian constraint surface in the space of (�, �̇, H), Ca? , is the same for
all possible values of a? so that, as in the case of Remmen and Carroll, it is found that the
full constraint surface, C, factorises as a product: C = Ca? ⇥ R+. The shape of Ca? for a
particular case is shown in Figure 1.

2.3 Calculating the Hamiltonian Flow Vector

From the Hamiltonian the Hamiltonian flow vector, equation (2.12), can be constructed.
This defines a vector field giving a geometric way to visualise Hamilton’s equations. The key
idea of Remmen and Carroll is to express this vector in a way so that the components do not
depend on a and so it is eliminated from the dynamics of the universe.

XH =
@H

@pi

@

@qi
� @H

@qi
@

@pi
(2.12)
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The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
sions for the momenta are kept general there is no way to invert the expressions to obtain
the velocities. Therefore, the Hamiltonian is written as a function of �, �̇, a and H instead
of as function of �, p�, a and pa and this also suits the purpose of this paper.

H =
X

q̇ipi � L (3.13)

The Hamiltonian constraint comes from varying the action with respect to the lapse
function (before it is set to be constant), see e.g. [17], and gives the the Friedmann equation:

H3�̇3
⇣
G5XX �̇2 + 5G5X

⌘
� 3H2

h
�̇2

⇣
�̇2(G5�X � 2G4XX)� 4G4X + 3G5�

⌘
+ 2G4

i

� 6H�̇
⇣
G4�X �̇2 +G4�

⌘
+ �̇2PX � P = 0 . (3.14)

The two-dimensional Hamiltonian constraint surface in the space of (�, �̇, H), Ca? , is
the same for all possible values of a? so that, as in the case of Remmen and Carroll, it is
found that the full constraint surface, C, factorises as a product: C = Ca? ⇥ R+.

3.2 The Hamiltonian Vector Field Components

The Hamiltonian vector field is defined by:

XH =
@H

@pi

@

@qi
� @H

@qi
@

@pi
. (3.15)

This definition lends itself to consider components in the �, p�, a, pa directions but the space
can be described in any choice of components such as (�, �̇, a,H). In this second coordinate
system the �̇ and H components of the flow vector are given by:

X
(�̇)
H = X

(p�)
H

@�̇

@p�
+X

(pa)
H

@�̇

@pa
, (3.16)

X
(H)
H = X

(p�)
H

@H

@p�
+X

(pa)
H

@H

@pa
. (3.17)

In the case of the Horndeski action, the momenta are given in equations (3.11) and (3.12)
and contain the unknown functions Gi(�, X). It is impossible to invert these expressions
without specifying Gi(�, X) and so, to keep the approach in this paper as general as possible,
an alternative route must be found. Directly from Hamilton’s equations the components

X
(p�)
H and X

(pa)
H are given as:

X
(p�)
H = �@H

@� = ṗ� , (3.18)

X
(pa)
H = �@H

@a = ṗa . (3.19)

Now, all that remains is to manipulate the partial derivatives terms in equations (3.16) and
(3.17). This is a simple inversion of the expressions:

@pi
@pj

=
@�̇

@pj

@pi

@�̇
+

@H

@pj

@pi
@H

. (3.20)
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Conformal Couplings4.1 Conformally-Coupled Scalar Fields

Theories with an action of the form:

S =

Z
d4x

p
�g


1

2
⌦(�)R+X + V (�)

�
. (4.1)

have been considered to be viable or important in the context of inflation for several reasons.
These stem from the original Starobinksy model of inflation [18] through to the more recent
superconformal ideas of Kallosh and Linde [19, 20] and Higgs inflation [21]. Due to this
interest it makes sense to pay particular attention to important issues that arise when dealing
with this set of actions in this context. These theories are a subset of the Horndeski action
given in equation 2.1 with P (�, X) = X + V (�), G4(�, X) = 1

2 [1 + ⌦(�)] and G3(�, X) =
G5(�, X) = 0.

Following the prescription outlined in section 3 the first key stage to arrive at is the
Hamiltonian of a theory whose action is given by equation 4.1. In calculating this Hamiltonian
the conjugate momenta are found to be:

p� =
@L

@�̇
=

a3
⇣
�̇� 3H@�⌦(�)

⌘

Nlapse
, (4.2)

pa =
@L

@ȧ
=

�3a2
⇣
2H⌦(�) + �̇@�⌦(�)

⌘

Nlapse
. (4.3)

The Hamiltonian of theories of this type is then given as:

H =
�a3(t)

⇣
6⌦(�)H2 + 6�̇@�⌦(�)H + 2V (�)N2

lapse � �̇2
⌘

2Nlapse
. (4.4)

The Hamiltonian constraint gives the Friedmann equation, equation (4.5), defining a three-
dimensional hypersurface in the full phase space or two-dimensional surface in the �� �̇.

2V (�) + �̇2 = 6H2⌦(�) + 6H�̇@�⌦(�) (4.5)

The shape of a slice of the constraint surface for a particular coupling is shown in
Figure 1. It should be noted that, due to the form of equation (4.5) there are two solutions
for H. This was not important in the work of Remmen and Carroll as the solutions had
an exact H ! �H symmetry but, as can be seen in Figure 1, the symmetry does not
necessarily exist in this model. Indeed, this is generally true for any model with G4 6= 1/2
which is another reason that this example is particularly instructive. This highlights the
importance of the caveat introduced in section 2.1, namely that we are mapping from some
region of the full phase space, in this case the H+ or H� regions.

The components of the Hamiltonian flow vector are then calculated to be:

X
(�̇)
H =

3@�⌦(�)
h
2V (�)� �̇2 + 4H�̇@�⌦(�))

i

6[@�⌦(�)]2 + 4⌦(�)

�
2⌦(�)

h
2@�V (�) + 3H2@�⌦(�) + 2H�̇@2

�⌦(�)
i

6[@�⌦(�)]2 + 4⌦(�)
, (4.6)

– 7 –

Good news: momentum and velocity still linearly related

4 Examples

4.1 Conformally Coupled Scalar Fields

Theories with an action of the form:

S =

Z
d4x

p
�g


1

2
⌦(�)R+X + V (�)

�
(4.1)

have been considered to be viable or important in the context of inflation for several
reasons stemming from the original Starobinksy model of inflation [9] through to the more
recent superconformal ideas of Kallosh and Linde [10, 11] and Higgs inflation [12] and, as
such, it makes sense to pay particular important issues that arise when dealing with them in
this context.

Following the prescription outlined in section 3 the first key stage to arrive at is the
Hamiltonian of a theory whose action is given by equation 4.1. In calculating this Hamiltonian
the conjugate momenta are found to be:

p� =
@L

@�̇
=

a3
⇣
�̇� 3H@�⌦(�)

⌘

Nlapse
(4.2)

pa =
@L

@ȧ
=

�3a2
⇣
2H⌦(�) + �̇@�⌦(�)

⌘

Nlapse
(4.3)

The Hamiltonian of theories of this type is then given as:

H =
�a3(t)

⇣
6⌦(�)H2 + 6�̇@�⌦(�)H + 2V (�)Nlapse

2 � �̇2
⌘

2Nlapse
(4.4)

The Hamiltonian constraint then gives the Friedmann equation, equation (4.5), defining
a 3-dimensional hypersurface in the full phase space or 2-dimensional surface in the �� �̇.

2NlapseV (�) + �̇2 = 6H2⌦(�) + 6H�̇@�⌦(�) (4.5)

The shape of a slice of the constraint surface for a particular coupling is shown in Figure
1. It should be noted that, due to the form of equation (4.5) there are two solutions for H.
This was not important in the work of Remmen and Carroll as the solutions had an exact
H ! �H symmetry but, as can be seen in Figure 1, the symmetry does not necessarily exist
in this model. Indeed, this is generally true for any model with G4 6= 1/2 which is another
reason that this example is particularly constructive. This highlights the importance of the
caveat introduced in section 2.1, namely that we are mapping from some region of the full
phase space, in this case the H+ or H� regions.

The components of the Hamiltonian flow vector are then calculated to be:

X
(�̇)
H =

3@�⌦(�)
h
2V (�)Nlapse

2 � �̇2 + 4H�̇@�⌦(�))
i

6[@�⌦(�)]2 + 4⌦(�)

�
2⌦(�)

h
2@�V (�)Nlapse

2 + 3H2@�⌦(�) + 2H�̇@2
�⌦(�)

i

6[@�⌦(�)]2 + 4⌦(�)
(4.6)
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But there is also a complication…



Conformal Couplings



K-flation

Figure 1: A two dimensional slice, Ca? , of the Hamiltonian constraint surface for a model
with a Lagrange density given by equation (4.1) with ⌦(�) = 1

6�
2 and V (�) = 1

2�
2.

X
(H)
H =

6H2[@�⌦(�)]2 + 2H2⌦(�) + 2H�̇@�⌦(�)
h
3@2

�⌦(�) + 2
i

6[@�⌦(�)]2 + 4⌦(�)

+
2V (�)�̇2 + 2@�V (�)@�⌦(�)

6[@�⌦(�)]2 + 4⌦(�)
. (4.7)

The importance of the asymmetric form of the constraint surface can now be seen.
Depending on whether the positive or negative solution for H is chosen two di↵erent vector
fields are arrived at, Figure 2. In many cosmological contexts, for example inflation or
quintessence scenarios, this is not a problem because we choose the expanding solution.

4.2 k-flation

While the previous example shows one of the features that needs to be considered when
dealing with more general actions it is possible to make the calculation using the exact
method of Remmen and Carroll. The simplest theory that shows the need for the method
presented in this paper is that of k-flation [22]. The action, equation (4.8), in this case
contains only P (�, X) and the usual Einstein-Hilbert term, that is G4(�, x) = 1

2 . All the
other terms from equation 2.1 are zero.

S =

Z
d4x

p
�g


1

2
R+ P (�, X)

�
(4.8)
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Gives us a problem…

Figure 2: The two di↵erent vector fields obtained on �� �̇ when choosing either a positive
(red arrows) or negative (blue arrows) H for a model with a Lagrange density given by
equation (4.1) with ⌦(�) = 1

6�
2 and V (�) = 1

2�
2.

Once again, using the procedure of Section 3, the canonical momenta can be calculated
and are found to be:

p� =
a3PX �̇

Nlapse
, (4.9)

pa =
6a2H

Nlapse
. (4.10)

In these equations the complications that prevent the method of Remmen and Carroll being
extended to more general cases than considered in Ref. [1] are evident. Without knowing
precisely what form P (�, X) takes there is no way of inverting equations (4.9) and (4.10) to
form expressions for �̇ and H.

3H2 + P = PX �̇2 (4.11)

In this case the H ! �H symmetry in the constraint surface is not broken so the potential
ambiguity seen in section 4.1 is not present in the k-flation case. Using the method described
above expressions for the flow vector components are found to be:

X
(�̇)
H = �

P�

PX
, (4.12)

X
(H)
H = 2H2 + Ḣ . (4.13)

– 9 –

Figure 2: The two di↵erent vector fields obtained on �� �̇ when choosing either a positive
(red arrows) or negative (blue arrows) H for a model with a Lagrange density given by
equation (4.1) with ⌦(�) = 1

6�
2 and V (�) = 1

2�
2.

Once again, using the procedure of Section 3, the canonical momenta can be calculated
and are found to be:

p� =
a3PX �̇

Nlapse
, (4.9)

pa =
6a2H

Nlapse
. (4.10)

In these equations the complications that prevent the method of Remmen and Carroll being
extended to more general cases than considered in Ref. [1] are evident. Without knowing
precisely what form P (�, X) takes there is no way of inverting equations (4.9) and (4.10) to
form expressions for �̇ and H.

3H2 + P = PX �̇2 (4.11)

In this case the H ! �H symmetry in the constraint surface is not broken so the potential
ambiguity seen in section 4.1 is not present in the k-flation case. Using the method described
above expressions for the flow vector components are found to be:

X
(�̇)
H = �

P�

PX
, (4.12)

X
(H)
H = 2H2 + Ḣ . (4.13)
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Cannot (necessarily) invert expression

What is the answer?

The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
sions for the momenta are kept general there is no way to invert the expressions to obtain
the velocities. Therefore, the Hamiltonian is written as a function of �, �̇, a and H instead
of as function of �, p�, a and pa and this also suits the purpose of this paper.

H =
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The Hamiltonian constraint comes from varying the action with respect to the lapse
function (before it is set to be constant), see e.g. [17], and gives the the Friedmann equation:
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The two-dimensional Hamiltonian constraint surface in the space of (�, �̇, H), Ca? , is
the same for all possible values of a? so that, as in the case of Remmen and Carroll, it is
found that the full constraint surface, C, factorises as a product: C = Ca? ⇥ R+.

3.2 The Hamiltonian Vector Field Components

The Hamiltonian vector field is defined by:
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This definition lends itself to consider components in the �, p�, a, pa directions but the space
can be described in any choice of components such as (�, �̇, a,H). In this second coordinate
system the �̇ and H components of the flow vector are given by:
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In the case of the Horndeski action, the momenta are given in equations (3.11) and (3.12)
and contain the unknown functions Gi(�, X). It is impossible to invert these expressions
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@a = ṗa . (3.19)

Now, all that remains is to manipulate the partial derivatives terms in equations (3.16) and
(3.17). This is a simple inversion of the expressions:

@pi
@pj

=
@�̇

@pj

@pi

@�̇
+

@H

@pj

@pi
@H

. (3.20)

– 5 –

The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
sions for the momenta are kept general there is no way to invert the expressions to obtain
the velocities. Therefore, the Hamiltonian is written as a function of �, �̇, a and H instead
of as function of �, p�, a and pa and this also suits the purpose of this paper.

H =
X

q̇ipi � L (3.13)

The Hamiltonian constraint comes from varying the action with respect to the lapse
function (before it is set to be constant), see e.g. [17], and gives the the Friedmann equation:

H3�̇3
⇣
G5XX �̇2 + 5G5X

⌘
� 3H2

h
�̇2

⇣
�̇2(G5�X � 2G4XX)� 4G4X + 3G5�

⌘
+ 2G4

i

� 6H�̇
⇣
G4�X �̇2 +G4�

⌘
+ �̇2PX � P = 0 . (3.14)

The two-dimensional Hamiltonian constraint surface in the space of (�, �̇, H), Ca? , is
the same for all possible values of a? so that, as in the case of Remmen and Carroll, it is
found that the full constraint surface, C, factorises as a product: C = Ca? ⇥ R+.

3.2 The Hamiltonian Vector Field Components

The Hamiltonian vector field is defined by:

XH =
@H

@pi

@

@qi
� @H

@qi
@

@pi
. (3.15)

This definition lends itself to consider components in the �, p�, a, pa directions but the space
can be described in any choice of components such as (�, �̇, a,H). In this second coordinate
system the �̇ and H components of the flow vector are given by:

X
(�̇)
H = X

(p�)
H

@�̇

@p�
+X

(pa)
H

@�̇

@pa
, (3.16)

X
(H)
H = X

(p�)
H

@H

@p�
+X

(pa)
H

@H

@pa
. (3.17)

In the case of the Horndeski action, the momenta are given in equations (3.11) and (3.12)
and contain the unknown functions Gi(�, X). It is impossible to invert these expressions
without specifying Gi(�, X) and so, to keep the approach in this paper as general as possible,
an alternative route must be found. Directly from Hamilton’s equations the components

X
(p�)
H and X

(pa)
H are given as:

X
(p�)
H = �@H
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Getting the partials

The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
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@� = ṗ� , (3.18)

X
(pa)
H = �@H
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We have to rewrite the partial derivatives

The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
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This is a system of equations we can invert 

But what about the components               ? 

The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
sions for the momenta are kept general there is no way to invert the expressions to obtain
the velocities. Therefore, the Hamiltonian is written as a function of �, �̇, a and H instead
of as function of �, p�, a and pa and this also suits the purpose of this paper.
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The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
sions for the momenta are kept general there is no way to invert the expressions to obtain
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of as function of �, p�, a and pa and this also suits the purpose of this paper.
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Revisiting Hamilton’s 
Equations

2.2 The Conjugate Momenta and Hamiltonian

Once the minisuperspace Lagrangian has been calculated the conjugate momenta of � and
a, so p� and pa respectively, are given by:

p� =
@L

@�̇
=

a3
⇣
�̇� 3H@�⌦(�)

⌘

Nlapse
(2.6)

pa =
@L

@ȧ
=

�3a2
⇣
2H⌦(�) + �̇@�⌦(�)

⌘

Nlapse
(2.7)

This is just a system of linear equations and so �̇ and H can be re-written in terms of the
momenta. The Hamiltonian of the theory is given in the usual way as:

H =
X

q̇ipi � L (2.8)

In this case, written in terms of �̇ and H:

H =
�a3(t)

⇣
6⌦(�)H2 + 6�̇@�⌦(�)H + 2V (�)Nlapse

2 � �̇2
⌘

2Nlapse
(2.9)

or, in terms of momenta:

H = Nlapse

0

@a3V (�) +
6⌦(�)p�

2 � a2pa
2 � 6@�⌦(�)pap�

6a3
⇣
[3@�⌦(�)]

2 + 2⌦(�)
⌘

1

A (2.10)

The Hamiltonian constraint then gives the Friedmann equation, equation (2.11), defining a
3-dimensional surface in phase space.

2NlapseV (�) + �̇2 = 6H2⌦(�) + 6H�̇@�⌦(�) (2.11)

It is important that the Friedmann equation should be independent of a in the ‘special
coordinate system’ of �,�̇ and H. This means that it is possible to write H in terms of �
and �̇ alone and so eliminate H from any later expressions. In geometrical terms, the two
dimensional Hamiltonian constraint surface in the space of (�, �̇, H), Ca? , is the same for
all possible values of a? so that, as in the case of Remmen and Carroll, it is found that the
full constraint surface, C, factorises as a product: C = Ca? ⇥ R+. The shape of Ca? for a
particular case is shown in Figure 1.

2.3 Calculating the Hamiltonian Flow Vector

From the Hamiltonian the Hamiltonian flow vector, equation (2.12), can be constructed.
This defines a vector field giving a geometric way to visualise Hamilton’s equations. The key
idea of Remmen and Carroll is to express this vector in a way so that the components do not
depend on a and so it is eliminated from the dynamics of the universe.
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So the components                are time derivatives of 
momentum 

The Hamiltonian is then constructed in the usual way, equation 3.13. Since the expres-
sions for the momenta are kept general there is no way to invert the expressions to obtain
the velocities. Therefore, the Hamiltonian is written as a function of �, �̇, a and H instead
of as function of �, p�, a and pa and this also suits the purpose of this paper.

H =
X

q̇ipi � L (3.13)

The Hamiltonian constraint comes from varying the action with respect to the lapse
function (before it is set to be constant), see e.g. [17], and gives the the Friedmann equation:

H3�̇3
⇣
G5XX �̇2 + 5G5X

⌘
� 3H2

h
�̇2

⇣
�̇2(G5�X � 2G4XX)� 4G4X + 3G5�

⌘
+ 2G4

i

� 6H�̇
⇣
G4�X �̇2 +G4�

⌘
+ �̇2PX � P = 0 . (3.14)

The two-dimensional Hamiltonian constraint surface in the space of (�, �̇, H), Ca? , is
the same for all possible values of a? so that, as in the case of Remmen and Carroll, it is
found that the full constraint surface, C, factorises as a product: C = Ca? ⇥ R+.

3.2 The Hamiltonian Vector Field Components

The Hamiltonian vector field is defined by:

XH =
@H

@pi

@

@qi
� @H

@qi
@

@pi
. (3.15)

This definition lends itself to consider components in the �, p�, a, pa directions but the space
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In the case of the Horndeski action, the momenta are given in equations (3.11) and (3.12)
and contain the unknown functions Gi(�, X). It is impossible to invert these expressions
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X
(p�)
H and X

(pa)
H are given as:

X
(p�)
H = �@H
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Figure 1. Apparent attractor solutions for an m2„2 potential, with equation of motion „̈ +


3/2


m2„2 + „̇2„̇ + m2„ = 0.
Solid: the apparent attractors; dotted: numerical solutions for random initial conditions. Plots are in „-„̇ space, in units
where MPl = 1; the scalar mass is chosen to be m = 0.2MPl. At large field values, the solutions are approximated by the lines
„̇ = ±


2/3m, while for small field values, all solutions converge on the origin.
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Figure 2. Numerical solution for evolution of an FRW universe with an m2„2 potential, with initial conditions („, „̇) = (6, 0.25)
at a (t = 0) = 1, plotted in („, p„) coordinates, where p„ = a3„̇ is the canonical momentum conjugate to „. Units are chosen
such that MPl = 1, with the scalar mass m = 0.2MPl. The apparent attractor behavior seen in Fig. 1 disappears in these
coordinates.

4. Properties 2. and 3. are not satisfied by any AÕ (
A.

There are other, related, definitions of attractors in the
mathematical literature [15]; in particular, a definition
in terms of Lyapunov stability is possible (cf. Sec. VI,
below).

An immediate consequence of Liouville’s theorem is
that no true attractor can exist in the phase space of
a system described by a Hamiltonian [16]; see also Ref.
[17], Sec. 22.6. Intuitively, if a bundle of trajectories con-
verges along a particular axis in phase space in a given
coordinate system, it must compensatingly spread out
along other axes, to conserve the total phase-space mea-
sure. Though we may wish to describe such behavior as
an “attractor”, it is always possible to remove this ap-

parent convergence by a canonical change of coordinates:
in essence, there is no coordinate-independent notion of
an attractor in the full four-dimensional phase space de-
scribing scalar-field cosmology in an FRW universe [18].

Despite the fact that it does not rigorously exist, how-
ever, the intuitive idea of an attractor appears in the
literature on scalar field cosmology, though a definition
of what is meant by an “attractor” is often left implicit.
This often occurs as a result of plotting trajectories in
some non-canonical phase-space variables, most com-
monly „ versus „̇ [1, 2, 10]. However, as one can see in
Figs. 1 and 2, apparent attractor behavior in („, „̇) coor-
dinates need not correspond to attractor behavior when
plotted in („, p„). Furthermore, recall that the full phase
space � is four-dimensional, not two-dimensional: a and
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