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The dispersion relation of a free point particle in general relativity
E2 o PaP,Béa'B _ E2 L 52 _ m2

- m s the invariant mass parameter
- E =g(y,p)is the energy of to the particle
* pPa = g(€aq,p) is the spatial momentum of to the particle
an observer on worldline y associates to the particle with 4-momentum p
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The dispersion relation of a free point particle in general relativity
E2 o PaP,Béa'B _ E2 L 52 _ m2

- m s the invariant mass parameter
- E =g(y,p)is the energy of to the particle
* pPa = g(€aq,p) is the spatial momentum of to the particle
an observer on worldline y associates to the particle with 4-momentum p

Covariant: The dispersion relation is a level set of a Hamilton function

H(x, p) = g*°(x)papp = m’

The covariant dispersion relation demonstrates
- its intimidate relation to the geometry of spacetime, i.e. the metric g
- the geometry of spacetime is derived from

second derivatives of H w.r.t. the momenta p of particles

- particle worldlines are determined by Hamiltons equations of motion




Planck scale modified dispersion relation of a free point particle

Doubly Special Relativity[Amelino-Camelia 2008], Relative locality [Amelino-Camelia, Freidel, Kowalski Gilkman, Smolin 2011]
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- What is the underlying spacetime geometry?
- Higher orders in E and p cannot yield metric spacetime geometry
- Relation between the particles 4-momentum p and E, p?
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Planck scale modified dispersion relation of a free point particle

Doubly Special Relativity[Amelino-Camelia 2008], Relative locality [Amelino-Camelia, Freidel, Kowalski Gilkman, Smolin 2011]

E°—p?=m* — E*—p°+L(EP)+..=m"

- What is the underlying spacetime geometry?
- Higher orders in E and p cannot yield metric spacetime geometry
- Relation between the particles 4-momentum p and E, p?

ldea: Start from covariant dispersion relation!

Covariant: The dispersion relation is a level set of a Hamilton function

H(x, p) = g°°(x)papp + £G¥*°(x)papppe + L2 H?U(X)papppcpd + ... = m?

The covariant dispersion relation encodes
* the geometry of spacetime, in the tensors g, G, H, ...
- the geometry of spacetime is derived from
second (and higher) derivatives of H w.r.t. the momenta p of particles

- particle worldlines are determined by Hamiltons equations of motion
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Hamilton phase space geometry Metric spacetime geometry:

- fundamental tupel ( T*M, H(x,p) ) - fundamental tupel ( M, g(x) )
cotangent bundle with spacetime with metric
Hamiltonian

—
Spacetime M Momentum Space T} M

Q= p,dx? = (x, p)
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Hamilton phase space geometry

fundamental tupel ( T*M, H(x,p) )
cotangent bundle with Hamiltonian

the Cartan non-linear connection N
determines the geometry of phase space

the spacetime connection and its
curvature determine the
geometry of spacetime

Haq( 6Hgbc)

%% = 1gM29(6pgll + Scghy —
0, = 05 — Nab(X1 p)ab

R?bed(x, p) = 261 app + 272 4191

Spacetime M I

Metric spacetime geometry:

fundamental tupel ( M, g(x) )

spacetime with metric

the lifted Levi-Civita connection pIl
determines the geometry of phase space

the Levi-Civita connection and
the Riemann curvature determine
the geometry of spacetime

rabc — %gaq (abgcq + acgbq
0, = 0, — pcrcab(X)éb
R ped(Xx) = 20(c T q1p + 207 1T b

_ angc)
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The geometry of a first order modified disEersion relation
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The geometry of a first order modified dispersion relation

H = g?(x)papp + £GP (x) papbpe
Nab(x, p) = —T9ppg + €2 pgpr (VoG p + VG, — g%IVG" 5p) + O(£7)
M%pe(x, P) = Mbe + £2pag® (VaGhe? — VpGea? — VGpy?) + O(£7)
CP4(x, p) = £3G°". + O(£°).

The geometry of phase space is determined by three distinguished objects
ne Cartan non-linear connection
ne spacetime connection and its curvature

ne momentum space connection and its cuvature
derived canonically from a Hamiltonian/disp. relation on phase space.




Point particle follow solutions of Hamilton equations of motion

ps+0,H=0, x?=0°H
In terms of the non-linear connection Nap
Pa+ Nap0®H = —[8, — N,poP|H = —6,H, x* =0°H.
They can be compared to the autoparallels of the geometry

P+ Nop,0°H = 0.
In general point particles are not freely-falling but subject to a force term
o, H

Theorem: (L Barcaroli, L. Brunkhorst, G. Gubitosi. N. Loret, CP 2015]

For homogeneous Hamiltonians H(x,s p) = s" H(x,p)
solutions to the Hamilton equations of motion are autoparallels:

the source term vanishes
0.H=0
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Dispersion relations are level sets of Hamilton functions on phase space.

The geometry of phase space is determined by three distinguished objects
- the Cartan non-linear connection

- the spacetime connection and its curvature

- the momentum space connection and its cuvature

The spacetime and momentum space geometry is phase space
dependent, i.e. depend on positions x and momenta p.

An only x dependent geometry of spacetime and only p dependent
geometry of momentum space is very special.




Dispersion relations are level sets of Hamilton functions on phase space.

The geometry of phase space is determined by three distinguished objects
- the Cartan non-linear connection

- the spacetime connection and its curvature

- the momentum space connection and its cuvature

The spacetime and momentum space geometry is phase space
dependent, i.e. depend on positions x and momenta p.

An only x dependent geometry of spacetime and only p dependent
geometry of momentum space is very special.

The geometric framework of Hamilton geometry allows a precise
geometric comparison between general relativity and the geometry of
spacetime induced by general (modified) dispersion relations.




Quantum gravity phenomenology:
» Geometric understanding of (modified) addition of momenta
» Geometric definition of observers, and transformations between them
+ Study modified dispersion relation in homogeneous and isotropic,
spherically symmetric or axially symmetric spacetime geometries

Applications to the analysis of PDEs:
- Dispersion relations are local representations of PDEs
» Geometric description of propagation of field modes.
Example: Propagation of light in general linear electrodynamics, for
example in media

H(x, p) = G?*“(x)paPbPcpd

Dispersion relations are level sets of Hamilton functions:
They determine the geometry of spacetime and momentum space.

Phys. Rev. D 92 (2015) 8, 084053; arXiv:1507.00922:
Hamilton geometry: Phase space geometry from modified dispersion relations
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