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Constructing the Spacetime

Create direct sums of a scalar field and 4-vector and 4-
covector fields.

Take all tensor products of such fields, creating a
subalgebra of the universal covering algebra of the
tensor algebra.

Write a general Lagrangian up to rank two, vary it with
respect to the 4-velocity.

Read off the equivalent Cristoffel symbols and
calculate the analogous curvatures.



Step 1: Create the Subalgebra of the Uni-
versal Covering Algebra
Define the “scalar-extended” x-vectors and x-covectors:

po_pla p and QRQa=CQoP Qs (1)
and all tensor products of these x-vectors and x-

covectors. Because Fy and )y are scalar fields,
coordinate transformations are effected via, for ex-

ample,
i 1 0
pPA= (O a_mw) Pe (2)
Oxb



Step 2: Define a second order element of
the subalgebra, an extended momentum
x-vector, and evaluate it.

JAB=YV D Aa® Ay ® ggp (4)

PA=cqp® (5)

§(P4, PP) = ey + eAgp® + e Ayp® + gopp™p

(6)



Step 3: Vary g with respect to the four-
velocity:

dvf +1 df (agdb _|_agad agab) ,va,vb
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Step 4: Define the extended derivative
operator and covariant derivative and write
the directional derivative.

Extended derivative operator:

G, _{o if A=0

ozA 3% if A=a

The directional derivative:

ovF
ozA

where V 4 is the extended covariant derivative.
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Step 5: Compare to generalized deriva-
tive to the variation of Step 3 and identify
non-zero equivalent Cristoffel and Cristoffel-
like symbols! (Here, the index 0 is a scalar index,
whereas roman indices in italics are vector indices.)
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dvf e’ -
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dx " m? M “pseudo-Newtonian
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Constraints Reducing Kaluza-Klein C-
Symbols to the In-Between Theory

Va'gbAa’ ==
oy — A%, =0
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These constraints are required to get the correct particle
Lagrangian from 5-d Kaluza-Klein—probably showing why
that theory won’t give the right particle dynamics.



Step 6: Derive the equivalent Ricci tensor
: SIBG S RO e e
=6 AR AC | pE O FE +C
RAB=—2.c — 5B T AB'CE~ 'AC'BE
(10)

Note: This x-tensor can be derived in the
usual way by a commutation of successive x-
covariant derivatives operating on an x-
vector. The result is of some interest!



Step 7: Obtain the components of the
Ricci x-tensor

R I 8F§b aFgw

dhisiiaes = + T e —Tacls,  (11)

s FC
Ry = (3 SLiE gt = Pgach) (12)
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(14)
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Rab _ axc 6g;b

+ 6T — gy, (11)

GR in Vacuo! | /OFC
Rq0 = 5 ( Ba:ca + ngFda —_ FgaFCd) (12)
with K
E&MinVac!  Fj = ot _ O4a (13)
: ba axa amb
H o0 dc O c de OV
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Klein-Gordon Equation! N, Elecromagnetic

Energy Density!



Step 8: Define the Extended Stress-Energy

5 ~ b
It (;;a fjib) (15)

where @, 3, and k are constants, and p is the energy
density, which may be presumed to be proportional
to the number density.

Step 9: Variational Derivation of the Field
Equations
The most natural field Lagrangian is

e / Ry=g d*z 16)

where R is the analogue of the Ricci scalar. Note
that this field Lagrangian is over a four-manifold.
The variation then yields the following field equa-
tions for the nonlinear metric:



X 1 ¢
Rap — 589ap + Vap = kTap (17)

e 1 e e
VAB:Q(1 pane el
? (¢5Cl + A Aa) Be 5aAbBe
(18)
where
B.=V/F,; (19)
and »
e (w L AdAd) (20)

These equations give GR, Maxwell’s equations, and
a Klein-Gordon field in vacuum, the latter with an
unusual dependence on the electric energy density.
Inside matter, Maxwell’s equations become nonlin-
ear.
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Step 10: An elementary cosmological so-
lution to the field equations

Ry — % (’lﬁ_léoo + R) Yv=ap (21)

1 Ly
Rap — 2 ("p 1ROO + R) 9ab = KL gp (22)
These two equations can be decoupled to the fol-
lowing two equations:

~ 20 1
Ry = (gOZP e gﬂT) () (23)

and
Rap — Rgap = KT up + pgap (24)

ds = —dr* + a¥(1) (do® + dy? + d2?) @ ()
(25)



Step 11: The Solution

ds? = (—dr? + 7'%°(da? + dy? + d2?))

® (at™ + br") (26)
a(T) = 9/9 (27)
Y =ar™ +br"- (28)
n.|_=—%—|— %—I—,B (29)
and
n_=—§— %-I—[)’ (30)

Effective expansion function A(v, 7):

A(v,7) = Vu2r10/9 4 grns 4 prn- (31)

Many possible cosmologies, including dark energy
cosmologies and inflaton-like “pre-expanded” cos-
mologies.
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Scalar Potential May Provide Extra Attraction
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