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This talk consists of two parts:

Part 1:
Static Spherically Symmetric Charged Brans-Dicke (CBD) Space-times

Part 2:
Time-independent perturbation of the Maxwell Equations in CBD
background Space-times: Exact solution of a toy model.

Joint work with Maya Watanabe (Monash U) (Institute)Exact solution of a toy model 13 July 2016 2 / 14



Part 1: Static Spherically Symmetric Electrov Brans-Dicke
Space-times

We extended the four branches of the Brans-Dicke solutions (Brans
1961) to include a static isolated electric charge as source.

Recall the four branches of the Brans solutions (Brans 1962) are:

ds2 = −c2e2α(r )dt2 + e2β(r )
[
dr2 + r2 (d2) + sin2 θdϕ2

]
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CBD solutions (continue ...1)

The different branches of the Brans solutions arise from the
representations of a complex function ln z = ln |z |+ i arg z , where
|z | = 1.
Specifically, they arise from a real function of a complex variable (see
also Bhadra and Sarkar 2005)

exp

(
φ1
2
√
ab
ln

(√ a
b r − 1√ a
b r + 1

))
,

where the real constants a, b and φ1 are given in terms of the Brans

constants B,C and λ such that C
2

λ2
:= (φ1)

2

4ab and B2 = b
a .

Written in familiar form: B2 = M2 := b
a > 0 , in terms of the mass

parameter M.

In the CBD solutions, B2 → M2 −Q2 , which is allowed to become
negative when charge is present.
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CBD solutions (continue ...2)

In the CBD space-times, the Brans parameter C = 2
(
−1+ 2

√
κ
)−1

(same as BD) is allowed to be complex due to the presence of an
isolated electric charge. (We thank Carl Brans for his thesis.)
The CBD spacetimes are given formally
ds2 = −c2e2α(r )dt2 + e2β(r )

[
dr2 + r2 (d2) + sin2 θdϕ2

]
CBD parameter κ = 4ab

(φ1)
2 − 2ω+3

4 =
( 1
C +

1
2

)2
e2α(r )

e2α0
exp

(
− φ1
2
√
ab
ln
(√

a
b r−1√
a
b r+1

))
1

N 2(r )

e2β(r )

e2β0
1

φ0

(
1− b

ar 2
)2
exp

(
− φ1
2
√
ab
ln
(√

a
b r−1√
a
b r+1

))
N2 (r)

φ(r )
φ0

exp
(

φ1
2
√
ab
ln
(√

a
b r−1√
a
b r+1

))
V ′ (r) c2Qφ1√

4π

e2α0φ0‘

ar 2(1− b
ar2 )N

2(r )

N (r) p2+e
− φ1

√
κ

2
√
ab
ln

(√
a
b r−1√
a
b r+1

)
− p2−e

φ1
√

κ

2
√
ab
ln

(√
a
b r−1√
a
b r+1

)

Joint work with Maya Watanabe (Monash U) (Institute)Exact solution of a toy model 13 July 2016 5 / 14



CBD solutions (continue ...3)

The constants

p2± =
1
4

(√
1+

e2α0φ0Q
2

κ
± 1
)

The formal CBD solution has 12 branches: each of the four main
branches corresponding to those in the BD solutions (where
b
a > 0,< 0,= ∞,= 0) can be further split into 3 subclasses
(corresponding to κ := 4ab

(φ1)
2 − 2ω+3

4 > 0,< 0,= 0).

Details of these 12 solutions are given in the PhD thesis by Maya
Watanabe (2016)
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Part 2: Time-independent perturbation of the Maxwell
Equations in CBD background Space-times: exact solution
of a toy model.

Consider the electrostatic field of an electric point charge placed at a
point (r , θ, φ) = (b0, θ0, 0) in a CBD background space-time.
Caveat: This is a toy model because in a CBD background such
perturbations couple back to the background geometry. Although this
is perfectly fine for BD backgound perturbations. (We thank Bob
Wald pointing this out.)
The linearly perturbed electrostatic VB (r , θ) potential satisfies the
Laplace-type equation(

4+
[
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] ∂
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)
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Exact solution of a toy model (continue ...1)

Whittaker (1927), Cohen and Wald (1971), Hanni and Ruffi ni (1973)
used the method of separation of variables and independently found
identical convergent series solution to the electrostatic perturbation
equation in a Schwarzschild background space-time expressed in the
usual Schwarzschild coordinates.

They used a "no pertubed charge inside the event horizon" as
boundary condition for their infinite series.

They demonstrated the stability of the Schwarzschild solution under
such linear perturbations.
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Exact solution of a toy model (continue ...2)

Copson (1928), using Hadamand’s theory of elementary solutions
(Hadamand 1923), constructed an exact solution to the electrostatic
perturbation in a Schwarzschild background space-time in isotropic
coordinates by applying a "symmetric boundary condition."

The event horizon of the Schwarzschild background solution in
isotropic coordinates is a surface of inversion, so a "symmetric
boundary condition" is easy to implement.

He found that when tranforming his elegent exact solution expressed
in isotropic coordinates, it becomes "rather complicated" in the
ususal Schwarzschild coordinates.

He found the infinite series of his transformed exact solution differs
from the Whittaker’s 1927 series solution by a zeroth-order term.
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Exact solution of a toy model (continue ...3)

Linet (1976) was able to express Copson’s exact solution neatly in the
usual Schwarzschild coordinates and concluded that Copson’s solution
was not for one but two charges, the second residing within the
horizon.

Watanabe and Lun (2013) examined the perturbation equation in a
Brans-Dicke Reissner-Nordström (BDRN) background using isotropic
coordinates.

We extend the 2013 paper to the electrostatic perturbation of the
CBD space-times by working with the formal solutions (see above):

1. We calculated the Hadamand series by direct substituting
VB (r , θ) = ∑∞

n=0
Un(r )Γn(r ,θ)

Γ
1
2

into the perturbation equation;

Γ (r , θ) = r2 + b20 − 2b0r cos θ is the square distance
between the perturbation charge and a field point.
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Exact solution of a toy model (continue ...4)

2. We find the general Un (r) term:

Un (r) =
m=n

∏
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and prove of the convergence of the Hadmamad series.
3. We applied Copson’s method to write the perturbation
potential as:

VB (r , θ) =
eα0φ

1
2
0 r
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γ (r) =
ab
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(ar2 − b) .
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Exact solution of a toy model (continue ...5)

4. The function F (γ) satisfies an ODE

γ (γ+ 1) F ′′ (γ)+
3
2
(2γ+ 1) F ′ (γ)+

(
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φ21κ

4ab

)
F (γ) = 0,

which has an exact solution
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5. Using Gauss divergent theorem we impose the single
perturbative charge condition and show the constants are
proportional to
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