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The lab and group

Extreme light group1 at Heriot-Watt: Non-linear optics group interested in a variety of
analogue gravity experiments

1D black holes in optical fibres – dispersive Hawking mechanism (long story)

Cosmological expansion in ‘epsilon near zero’ materials – dynamical particle creation (this
talk)

Rotating black holes in ‘photon fluids’ – Zel’dovich effect, superradiance (the future)

Voted `Remain'

Heriot-Watt

X

SCOTLAND

1http://extremelight.eps.hw.ac.uk/



This talk in one slide

Homogeneous time dependent environments spontaneously produce quanta from the
vacuum e.g. cosmological a(t).

There is an analogy between gravity and dielectrics for electromagnetic wave propagation:

ds2 = −dt2 + hij (t, x)dx idx j ,←→ D i = εij (t, x)Ej

µij , ε
ij =
√
g hij

The quanta that are most abundantly produced have a frequency

ωpeak = max
ȧ

a

and the number spectrum k2|βk |2 usually looks like this:

However, in optics ‘normal’ laboratory conditions are adiabatic and perturbative so we’re
in the exponential tail and the peak is small

New Physics: There is an exciting and revolutionary new kind of material which beats
both the adiabatic and perturbative limits: Epsilon Near Zero (ENZ) materials (I called these

thin film metamaterials in original talk title but they’re not really metamaterials. . . )

Moral of the story: Cosmological particle creation in the lab just got a massive boost
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What analogy? Why perturbative and why adiabatic?

Assuming a homogeneous variation of permittivity is possible (subtlties) the wave equations for
the electric field are

∇2E =
∂

∂t
a(t)

(
∂

∂t
a(t)E

)
– cosmology

∇2E =
∂

∂t
µ(t)

(
∂

∂t
ε(t)E

)
– optics

Its an analogy at the level of the wave equation, not just geometric optics. . .

We’re not talking about an analogy with a scalar field, we’re talking about
electromagnetism. . .

Caveat: We need ε(t) ∝ µ(t) ∈ R (lets talk about this)

Mechanism: Non-linear Kerr effect:

δn ∝ |E |2

Typically2 δn ' 10−4 − 10−3

Numbers Typical optical frequencies are of the order of fs ∼ 10−15s; solitons which induce the
variations can at very best be of the oder of 10s to 100 fs ∼ 5× 10−14s so the picture is more
like:

2Intensity can be 1013 W/cm2, Kerr index is about 10−16cm2/W – this is non-linear optics after all. . .
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Enter ENZ materials!

The ENZ material: ‘oxygen-deprived aluminium-doped zinc oxide’ (AZO)

Epsilon Near Zero means
that its background value
can officially be zero or
even negative.

The non-linear (Kerr)
response is always positive.
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Huge non-linear response

Extremely fast response

Massive relative changes

There is always an ‘imaginary part’ so to get n and the
damping you need to take the complex square root:

Refractive index = Re
√
ε+ iε′′

Damping coefficient ' Im
√
ε− iε′′

(0.1)



A prediction: Lots more quanta produced near ENZ

Equation of motion:

d2

dt2
Ek + ω2(t)Ek = 0, ω2(t) =

c2k2

ε(t)

How to do the QFT calculations: Options

1) Reduce problem to ‘Bremmer’ integral

β :=
1

2

∫ T

−T

ω̇

ω
e−2ı

∫ t ω(s)dsdt

2) Re-cast as QM scattering problem, use exact solutions
from the 1950s:

d2

dx2
ψ +

2m

~2
(E − V (x))ψ = 0, |β|2 =

1

T
− 1

Predicted number of photons:

k2|βk |2 × Vol = 10−stupid – not at ENZ wavelength

= O(1)! – at ENZ wavelength

Next step: Actually do the experiment.
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Take home Messages

Non-linear optics is a great place to do analogues – high precision, very active field,
technologically advanced

Scotland voted to remain – and remain eligible for MC fellowships / ERC grants

The ‘cosmological’ quantum effects just got way more observable thanks to a
revolutionary new kind of material

We’ll be doing the experiments soon. . .

Thank you



Epilogue - loose ends

Co-moving black holes induced by high intensity laser pulse and the non-linear Kerr effect
in media.

The cosmology is in the orthogonal subspace

Dispersion is accounted for by working at a single wavelength which is conserved

The optics people are interested in the ‘redshift’ which in this case would be a
‘cosmological redshift’


