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Introduction
e0

Motivation and problem basics

Reaching future lightlike infinity

Gravitational waves are only well defined at
future null infinity (.# 1), where observers
of astrophysical events are located.

The study of global properties can also
benefit from including .# .

A possible approach to tackle this problem
is to conformally compactify our spacetime:
conformally rescale the physical metric g,

Juv = Q2§m/7 (1)

so that Q| s+ = 0 at the appropriate order
to keep g, finite there.
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Standard slicing options for the initial
value formulation of the Einstein equations,
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e Standard Cauchy slices

e Null slices

e Cauchy-Characteristic matching /
;0 extraction
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oe

Motivation and problem b,

Slicing spacetime

it

Standard slicing options for the initial
value formulation of the Einstein equations,
to solve them as an evolution in time:

e Standard Cauchy slices

o Null slices

e Cauchy-Characteristic matching /
;0 extraction

e Hyperboloidal slices

Advantages of the hyperboloidal approach:

7"

e Extraction at .# T, no approximations.

— hyperboloidal e Slices spacelike & smooth everywhere.

e More resolution for the central part.




Introduction
o

Review

Brief history of the numerical hyperboloidal IVP

e Conformal Field Equations by Friedrich: generality maintained
and regularity manifestly shown.

e Numerical implementations by Hiibner (tested by Husa,
continuum instabilities found) and by Frauendiener.

e Free evolution (generalized harmonic) and a fixed conformal
factor by Zenginoglu: Schwarzschild in spherical symmetry.

e Constrained evolution by Moncrief and Rinne: working
axisymmetric code.

e Tetrad formalism by Bardeen, Sarbach and Buchman.
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Introduction
o

Review

Brief history of the numerical hyperboloidal IVP

e Conformal Field Equations by Friedrich: generality maintained
and regularity manifestly shown.

e Numerical implementations by Hiibner (tested by Husa,
continuum instabilities found) and by Frauendiener.

e Free evolution (generalized harmonic) and a fixed conformal
factor by Zenginoglu: Schwarzschild in spherical symmetry.

e Constrained evolution by Moncrief and Rinne: working
axisymmetric code.

e Tetrad formalism by Bardeen, Sarbach and Buchman.

Main difficulties of the numerical implementation:

e Extra formally divergent terms at .#+ appear in the equations:
E
Q
e Non-trivial background (K # 0), unlike with Cauchy slices.

G = 87 Ty — 2 (VuVoQ — 9, VV,Q) — %gw(vwg)vm. @)
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Introduction
°

Implementation approach

Basic approach

® Choose a free evolution to evolve the Einstein equations as an
initial value formulation; singularities (punctures, trumpets) are
easily avoided, but the system is difficult to stabilize.

® Use a standard formulation of the Einstein equations: generalized
BSSN formulation (GBSSN) or a conformal version of the Z4
formulation (Z4c); different constraint propagation properties -
useful to compare.

® Set a time-independent conformal factor and impose hyperbolic
gauge conditions compatible with the non-trivial background:
possible to adapt common current gauge choices.

@ Start in spherical symmetry due to its simple numerical
implementation. It still includes difficult parts, like the
regularization of the radial direction.
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Initial data
o

Initial data calculation

Height function and compactification
Hyperboloidal foliations can be described introducing a new time ¢

t=1t—h(F), (3)
related to the old ¢ by a height function, whose first derivative is

K 73
semet + Come

W (F) = — .
(1 2) /(B4 1 one) + (1- 20

(4)

To reach ¥ T we compactify the radial coordinate into a new r, with
Q) determined by imposing a conformally flat spatial metric:

r
r = —. 5
=t 5)
The whole line element is rescaled using the conformal factor
2 _ 2
Q= (-Kcumc) JG : (6)
Ty
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Regular initial data

Flat spacetime on a CMC hyperboloidal foliation

For flat spacetime the height function can be integrated to

h(7) = \/(3/Kcnc)? + 2.

IKemel = 3

--- r =const I -- r = const
— t =const 4 — t =const

--- r = const
— t =const




Initial data
o

Strong field initial data

CMC trumpet geometry on a hyperboloidal foliation

R=0 it

IKemel =1 [Kemcl = 2

— t =const
-- 1 =const

— t=const
-- 1 =const
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Implementation
[ ]

Treatment of &1

Scri-fixing and other coordinate choices

In our spherically symmetric setup we

Th ferred f 1
fix the location of #T by making the e preferred conformal gauge,

tiraneavector flow alf)ng T then Q| s+ =0, (7)
(5) =an®+ 4 is null at JF.

holds for some & and A". It
simplifies how the divergent

o a
Q=0 (%) ; !
an® terms cancel & is a requisit for:

+ a
7 p The Bondi time at £t is
related to our code time ¢ via

ka

a a2w
nT Sa\ dtBondi = de (8)
The conditions are: 9,82| , =0 and where w = 1 if the preferred
Gitl s+ = —a? + X—l,yrrﬁ‘ﬂ‘ﬂ —0. conformal gauge holds.
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Implementation
L]

Gauge conditions

Hyperbolic slicing and shift conditions
Slicing: Generalized Bona-Massé equation of the form
a=p"d — fla)a® (K — Ko) + Lo, (9)

with freedom to choose the two functions Ky and Lyg.
e Harmonic: f(a) =1
o 1+log: f(a) = n1tia/a
e Constant coefficient: f(a) = nconst/a2
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Implementation
L]

Gauge conditions

Hyperbolic slicing and shift conditions
Slicing: Generalized Bona-Massé equation of the form
a=p"d — fla)a® (K — Ko) + Lo, (9)

with freedom to choose the two functions Ky and Lyg.
e Harmonic: f(a) =1
o 1+log: f(a) = n1tia/a
e Constant coefficient: f(a) = nconst/a2

Shift: e Fixed shift throughout the evolution.
e Gamma-driver shift, with source function and damping;:

B =B A AN B+ Lo~ g (10)
e Harmonic shift, with source function and damping:

§pr
L —
2%rr Yrr o Q

2./ /
ﬂr :,BT,@N-{-OCQXAT-F X _ axw Br. (11)
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Implementation
L]

Gauge conditions

Hyperbolic slicing and shift conditions
Slicing: Generalized Bona-Massé equation of the form
a=p"d — fla)a® (K — Ko) + Lo, (9)

with freedom to choose the two functions Ky and Lyg.
e Harmonic: f(a) =1
o 1+log: f(a) = n1tia/a
e Constant coefficient: f(a) = nconst/a2

Shift: e Fixed shift throughout the evolution.
e Gamma-driver shift, with source function and damping;:

B =B A AN B+ Lo~ g (10)
e Harmonic shift, with source function and damping:

§pr
L —
2%rr Yrr o Q

2./ /
ﬂr :,BT,@N-{-OCQXAT-F X _ axw Br. (11)

BH stationary end state depends on choices like f(a) (and \).
Matching for physical characteristic gauge speeds at # .
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Implementation
[ ]

Summary of implementation choices

Treatment of .#* and gauges
After experimentation with our implementation:
Required: e Scri-fixing

e Correct behaviour of gauge variables at &+
(to account for the non-trivial background)
— source functions and (if necessary) source terms

e No divergent terms to cause exponential growths

Convenient: e Preferred conformal gauge
e Bondi time at .# T

Possible: e 1+log slicing, Gamma-driver shift; matched to the
appropriate behaviour at .+

e Other time parametrizations at .#+
To test: o Superluminal gauge speeds at &+

Once necessary conditions satisfied, the implementation is robust:
many possible choices!
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Simulations
(]

Collapse of the scalar field

Evolution: y, /', «, 7", ® /)
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Simulations
@00

Schwarzschild trumpet initial data

Effect of slicing conditions
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Log( Abs(®d))

Simulations
(o] o}

Schwarzschild trumpet initial data

Power-law decay tails of the scalar field
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Simulations
ooe

Schwarzschild trumpet initial data

Slopes of the decay tails
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Simulations
o0

Gridpoint on £+

Numerical grid at &

e Staggered grid:
simpler implementation; values on .#+ using extrapolation.
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Simulations
o0

Gridpoint on £+

Numerical grid at &

e Staggered grid:
simpler implementation; values on .#+ using extrapolation.

r="1y

e Non-staggered grid:
requires regularity conditions at .# 1 and calculating the limits of
the divergent terms in the equations; quantities given on .# .
r=ry

1d initial



Simulations
oe

Gridpoint on £+

Scalar field - convergence at &

Convergence of the rescaled scalar function at J*
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Conclusions

Summary

e Qur implementation of the hyperboloidal initial value problem in
spherical symmetry allows us to evolve a large variety of data.
To our knowledge, this is the first stable free evolution achieved
with a standard formulation.

e The behaviour of the scalar field signals extracted at .# T (decay
tails, convergence) corresponds to the expected one.

e Compatible gauge conditions have been extensively studied and
now we better understand their freedom and robustness.

e The treatment of .#* has been improved with the introduction of
the preferred conformal gauge and the gridpoint on .#T.

We are now ready for further work:
o Simulations in AdS (£ is timelike — boundary conditions).

e 3-dimensional code and appropriate initial data.
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Thank you for your attention!

Questions?
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What to do?

To solve the problem the equations need to be regular and a gauge
has to be chosen. This can be done in two ways:

Regularize first - Friedrich’s conformal field equations approach
Here one maintains generality and develop a framework
where regularity can be shown. New variables are
introduced, which leads to a large system of equations.
The gauge can be specified afterwards.

Set gauge condition and then regularize
One can assume “inertial observers” at %+ and fixed
coordinate location for # 1 from the start. The
regularization procedures are adapted to the chosen
gauge and the final system is much simpler.

Our aim is a robust code for numerical work and thus we will take the
second approach.
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Implementation of set-gauge-then-regularize

To evolve the Einstein equations as an initial value formulation on a
hyperboloidal foliation first setting the gauge and then regularizing,
we have mainly two options:

Elliptic hyperbolic problem Purely hyperbolic problem

e constrained evolution e free evolution

X global equations, v easier to avoid singularities
hard to avoid singularities (using excision or punctures)

v easier to stabilize X instabilities

v/ can impose boundary X cannot impose boundary
conditions conditions (have to evolve)

X slower v faster

e Moncrief, Rinne, ... e Zenginoglu, Bardeen et al., ...
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Evolution variables

We use either the Generalized BSSN formulation or a similar
conformal version of the Z4 formulation of the Einstein equations.

The line element with our spherically symmetric metric variables is
ds* = —a?dt®> + X7 [y (dr + B7dE)? + yeer® (d? + sin® 0de)] . (12)

Also the trace of the extrinsic curvatue K, a component A,.. of its
trace-free part and the contracted difference of Christoffel symbols A”.
And for the Z4 formulation its variables © and Z,.

We add a massless scalar field with evolution equation

v,

9V -2V, B

0, (13)

and its spherically symmetric variables are ® and Il = b.

Free hyperboloidal evolution of strong field initial data in spherical symmetry Alex Vano-Vinuales



GBSSN and Z4 variables

The three-dimensional conformal metric vy,p = XYap, Where 74 is
the physical metric.
From the physical extrinsic curvature tensor Kg:

o Its trace K. ~
e Its conformal trace-free part Aqp = X (Kab — 5 K).

‘l
The conformal factor x = (%) ’ (or p = —2Inx).

The vector A® = AT'® = ~b¢ (Fgc — f‘l‘fc), where I'j, are the
Christoffel symbols calculated from 7,4, and f‘(‘fc the ones built
from a background metric Jgp.

The gauge variables:

e The lapse a.
e The shift 5 and its auxiliary variable B®.

The Z4 variables: © and Z,.
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3+1 decomposed equations

01 %y = —2aKg,

_ _ o _ _ K
9] Kap = a[R[D]ab*2K§Kbc+Kab(K*Z(‘ZM("))+2D(G,Zb)*

Yab [(GLSZ)Q _ Q2DCS1DCQ] . 1aZ(, Dy . 20D, DaQ 2074y Z°DoC
an? Q Q Q
FapDaDc2 N “%bAQJr?RabSLQ N Vab(K—2C7,.0)0, Q

+
Q Q Q Q
Fab@ 1 @01 Q2 Fapd 0 Q i .
4+ 1abPL 7L YabCLOL e [345(S — 0) — 254p]s (14b)
a2Q aQ
a _ o _ 211 (2 + Kko)O ~
9,0 = N [R[D] — Rap R 4 K(K-2C, |4‘4—))+2DEZQ—% —Cpu.Z%Dao
3 [(8 2)2 — a2D%QD 52] 20AQ 2(K-2C,,.0)0,Q
n a a ( Z4c©)9 1 .
+ + + —8map , (15a)
an? Q Q
oy _ _ by R1Za _ 200D, Q
9, Zq = a|DyRY —DoK 4+ Dge-2K,,2"-—-"%| C,,.0D404 — "
' Q Q
- 7 bp oy o b
20,0, 9 2aKo"DyQ 2Z,0,9 2Dgad | Q
_ZTaf1% a b ZFegLT | ZHeILY  srada . (15b)
Q Q Q a®
Pl _ &, gab o 6[(0L? —a?DP%0D.2] 1Ae  4Ko, Q
H = R[D] - K, K + k2 +— + = _i6mp, (16a)
a20?2 Q af
o _ 2k P, 259°p e, 0 239D, ad | Q
M® = DyR™ _5%p, K- Ui bOLT bIILY grgo . (16b)

Q aQ a2Q




GBSSN and conformal Z4 equations I

9 x

91 Agp

o, K

9 A?

2 1 1
Sax(K+20) + —x0) Inv 91%ab = —24apa+ -VapdL 07 (17a)
aDgxDpx 1
ax (R[D]n’b n 2D(azb))7xDana — D aDpyx — T+;aDanx
2aD(,xDy Q2 2axDg DyQ daxZi, Dy TF

+2Z(qaDyyx+ @207 + (@78 " graxSqyp

( Q Q Q

. ) 24,,0,Q 1
—20AS Ay + aAgp[K+2(1 ('Zh)(—>]+T+gAab0l1nw , (17b)

1 k1(1 — Kg)© 1
o [AabAab+ C(K420)2 4 T T PP A e+ —D%aDax+2C 54, 7%Dyo
3 Q 2

3[(0, )2 — a?xD%QDeQ]  20Z%DgQ  3xD%aDa  aD%DqQ  ax A Q
+ - + +

Q2 Q Q 20 Q
[K42(1 4+ Cpyo)0l0, Q@ 30,00,Q 39,0,Q
+ ZAc L0 OO PO a(p 4 s), (17¢)
Q Qa? Qa
4 2 3A%Y D,  4Z9(K +20)  2k12°
cP(DyB?) + a [24%¢Ar? —“p*K — ZD% — bx 2 -
. 3 3 X 3x Qx
I . 10 A% DO
4P Dy Dep® — APCRID]I% g8t — 24%PDypa—2C,, 0D 0 b0
Q
4a(K — ©)D?Q  4D%9,Q  4D%0,Q 4zZ%0, Q
_ _ + _
3Q Q Qo Qx
1, 1 a 2Z%9 | Iny  16wJ%q
——D%3 | Iny — —AT*8 Iny— — | (17d)
6 3 3x X




GBSSN and conformal Z4 equations 11

o 2 211 (2 + Ko)O
s, = = [X(R[D] +2D%Z4) — AgpA®Y + Z(K+20)2 20, 0(K + z<—>)7¥]
2 3 Q
5aD%xDgx " aZ%Dyx  2ax A Q aD%DgQ
o x—- — % ¢, 2% 0 + -
ax 2x Q Q
2 2 pa .
3[(0, )2 — a2xD¥QD,Q]  2[K+2(1 — Cyy.)©]0 Q
n (oL a ]+ [ ( Z4c)©19 1 _smap . (18a)
Q2 Q

2 5D%Dgx 6(d, Q)2
H = XR[D] - AgpA®Y 4 Z(k420)2 p2ay - o XX 0L
3 2x Q2a2
6xDQDgQ 2D%xD g2 Ax A Q 4(K +20)0, Q
- - + + —167p , (19a)
02 Q Q Qa
aAb oAb . . -
2 3AY D, x 24Dy 2(K +20)D,Q  2Dg,0, Q
Mg = DyAb — Zpg(ki2e) - ZLaTbX TPa b ar  ZTe?l
3 2y Q 30 Qa
2Dqad | Q
Z7a% LY 8nda (19b)
Qa2

aza

c* = A*-—Ar*- — . (19¢)
X




Spherically symmetric equations

¢ = By 4+ 2ax(K +20) By, x  287vgex  28"'x  487x N 26"xQ 2ax
X = x 3 3Yrr 3700 3 3r Q af

, (208)

ution of



Spherically symmetric equations

2ax(K +20) By, x  287vgex  28"'x  487x n 26"xQ 2ax (20a)
3 3Yrr 3700 3 3r Q af)
267“77’%« 277”r'ﬁr7é9 + 4y, 8"’ _ 477

= —2A. —
E ot 3 3700 3 3r

X = B+

, (20b)
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Spherically symmetric equations

2ax(K +20) By, x  287vgex  28"'x  4B87x n 28"xQ 2ax

x = B'X - 22X (20a

X Fix 3 390r 3706 3 3r Q o (202
28", 29rrB V99 | AYrrBT Ay BT

e = =240, o - ; 20b

K at 3 3ves T 3 37 (20b)
ATT r_ /! ™/ 2 r/ 2 ™

P Yoo Y008 Yy n B Voo 27008 " Ye6 8 7 (20c)

Yrr 3Yrr 3 3 3r
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Spherically symmetric equations

X = B+ 2ax(K +20) B v,x  287vgex  28"'x  4B87x | 28"xQ  2ax (202)
3 3Yrr 3700 3 3r Q aQ
2 T 2 L 4 T/ 4 ) T
N = —2Aa+t B Vrr  29rrB e YrrBT Ay ’ (20b)
3 3760 3 3r
Ar’r ./ r_ ! 2 r/ 2 ™
oo = v00 Y008 Yy 4 B"v90 27008 n Yoo 3 , (200)
Yrr 3Yrr 3 3 3r
. . 2 . ax~'". ax~ 2va ax”"
Apr = BTAL 4 Syppax AT — X0 OXee  EXE L OX L oA, K+ 2(1 — Cza.)6)
3 3V 300 3 3
720(Af,1, " 487 Ay _ 48" Ay 4 ax (7;,,,.)2 B 2ax ('yée)z « (Xl)2 B 2N x
Yrr 3 3r 272, 375 6x 3r
420 (vw B 1) _AB, 240790 A XY A XYrrYee  20XY1
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_ax' n éZ ax' — 2ax7). Y _ 20xYgeSY . 4ax' QY n A BT _ 3aA,,
3r 37" 3y 2 376992 30 Q a
4axQ’  4axQ’  8Z,.axQ 16
axQ’ dax rox® 16 (@) (20d)
3Q 3rQ) 3Q 3
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Spherically symmetric equations
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Spherically symmetric equations
28" xQY _ 2arx

x = Principal part + ... +7%4 terms+ (20a)
Q a$?
~Yrr = Principal part + ... |, (20Db)
Yoo = Principal part + ... |, (20c)
. . A, BTQ 3aA,,
A, = Principal part +...+7%4 ‘rm'm.\‘JrT - 9 +Q terms+Matter terms , (20d)
a

ution of



Spherically symmetric equations

28"xQ 2«
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Q a$?
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" 2 ! 17 ’ r !
K = gk —-X% 4 S(ki20)? 4 Saé” TheX  ZleeX JaxX | ox
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Q Yrr 292,.Q Vrr Y002 Vrr§2 297
27,.axQ  [K+2(1 — Cz4.)0] B"Q 2(y(K+2(—))+2axf2/ axQ”’
Yrr €2 Q al) VT2 Yrr§2
3 Zax () 8x(Il— B d’)?
L 3o Sax (@) su( " (20¢)
a2Q? Y22 «
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Spherically symmetric equations
28" xQY _ 2arx

x = Principal part + ... +7%4 terms+ (20a)
Q a$?
~Yrr = Principal part + ... |, (20Db)
Yoo = Principal part + ... |, (20c)
. L A BT 3aA,,

A,. = Principal part +...+%4 ‘rm'm.\‘JrT — 9 +Q terms+Matter terms , (20d)

a

. . Kp Q' 2aK
K = Principal part +...+74 t(‘rmsﬁ+T — Q +Q terms+Matter terms , (20e)
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Spherically symmetric equations

28" xQ B 2ax

x = Principal part + ... +7Z4 terms+ — R (20a)
Q a$l
~rr = Principal part + ... , (20Db)
Y09 = Principal part +... , (20c)
. . A BT 3aA,.,.
Ar = Principal part +...+74 LO““HFT — TJrQ terms+Matter terms , (20d)
a
. o KpB™Q' 2aK
K = Principal part +...+7Z4 terms-+ a — Q +Q terms+Matter terms , (20e)
a
. - o EarATBT
A" = Principal part + ...+%4 T(*r'ms+7g+ﬂ terms+Matter terms , (20f)
a
X Lo 3aB"Q’
& = Principal part + ... — T+Q terms , (20g)
. - EsrB” S s
B™ = Principal part +...— 9 +Q terms , BT = Principal part + ... , (20h)
. Cz4.08"Q 3Cz4c. —4)a® 01 (2 <2 )®
©® = Princ.+ ...+ 2498 + (3Cz4c )e - F1(2 4 rz)a +Q terms+Mat. , (20i)
Q af) Q
& = Principal part , (20j)
. o 3MB7Q  3all
II = Principal part + ... +74 Lorms+T — T+Q terms . (20k)
a
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Schwarzschild spacetime on a hyperboloidal foliation

In strong field initial data, the
parameter Co e determines the
behaviour of the inner part of the slices.

e For large Copse, the polynomial

_ 2
A(f)+<KCZVICT . Cczwc) (21)

3 72
has no roots; Hannam et al, arXiv:0804.0628 [gr-qc]
e for small Cope the slice is not The interior part of a trumpet
defined between the roots slice asymptotes to an infinitely
Ry <7 < Ry; long cylinder, located at a finite
e the critical value of Copre will value of the Schwarzschild
provide a trumpetgeometry, with a radial coordinate (Rp).

double root 7 = Ry.
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Schwarzschild hyperboloidal trumpet

For the critical Copze value, the compactification factor Q can be
integrated numerically up to the origin of the new coordinate r by
imposing conformal flatness and solving numerically the equation

(@ - r Q)2

T K, MCT C M QZ D

Yrro =

T

Two different asymptotic ends are 0151

compactified by Q:
e Trumpet: 7 =0 «— 7 = Ry,
where Q ~ r/Ry.

o I r=1y+— 7 =00,
where (Q ~ Q).
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Reissner-Nordstrom

The properties of the Reissner-Nordstrom spacetime are interesting
for what can be carried over to the Kerr spacetime case.

The Reissner-Nordstrom black hole slices present an equivalent
dependence on the parameter Co o to the Schwarzschild case.
Constant-mean-curvature Reissner-Nordstrom slices with critical
Ceone also correspond to trumpets.

‘ . o= T T T 5
0.12r 1 — Schwarzschild
~005F - RN, Q=09M ]
0.10} 1 .
o010 Extreme RN ]
0.08f ] 015
[S] o006k @ E oo,
. ~0.20F 0005 ]
0.000
0.041 Schwarzschild —0.250-0005 1
002l -- RN, Q=09M ’ 70:010 .\ \
- - Extreme RN ~0.30}-00: E i 1
wool ] ‘ 0,00 005 010 015 020 ) )

0.0 02 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10
r r

1d initial



Schwarzschild trumpet initial data in the variables

O Ty
7X L. o

7 Y Y 10.75

—2.} 105 %
. Qo
< et [
-3t T j02s 5
‘ 5
4| N ———NN—NeMSNNMMMMNNe 10,
l/’ \\\\
-5 - —— 1-025
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Solving the constraints

The Hamiltonian and momentum constraint equations have to be
solved for the initial data including a scalar field perturbation.
The quantities used in the calculation are i and 14, introduced as

—4 -6
X — X(ﬂ/} and Arr - (Arr() + 1/JA)1/) . (23)
Schwarzschild —b 07 ‘ Schwarzschild Tbased

1.014 ‘ : ‘ : : :
1012} ] 06f 1
1.010} 1 05¢ ]
1.008} 1 04r ]

s N

1.006} 17 03¢ ]
1.004} 1 o02f ]
1.002F 1 o1f ]
1.000 5 . . , ; 1 0.0k f . . ; =
00 02 04 06 08 10 0.0 0.2 0.4 06 08 1.0

rmmetry



Preferred conformal gauge

The null tangent to .#+ (1) is affinely parametrized, [V ,I°| s+ =0
(this does not imply an affine time coordinate), if

0Q| 4+ =0. (24)
This is the preferred conformal gauge, which also satisfies that the

divergent terms in (2) independently attain regular limits at ..

The preferred conformal gauge can be achieved by choosing equations
of motion for the gauge variables that satisfy (24). A possibility is to
choose & and 8" calculated from

g (Fop =Ty ) = F*, (25)

where f‘gb is the four-dimensional physical connection, f‘gb is the
connection calculated from a time-independent background metric and
F¢ is a source function that has to satisfy F"| s+ o Q2 with ¢ > 2.
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A posteriori reparametrization

An affinely parametrized time coordinate (Bondi time, ¢g) is achieved
if the preferred conformal gauge and 042’ g4 X B"| z+ are satisfied. If
this is not the case, the code time can be reparametrized a posteriori
to obtain the Bondi time. Introducing a new conformal factor

Q= w, (26)

where € satisfies the preferred conformal gauge. The deviations from
it are included in w at .#* by the expression

w_ By axd L B

w B 277’7” 77‘7'/87‘ 2X

. (27)

The relation between the Bondi and code times at .# T are given by

a2w

dig = ——
B /BTQ/

dt. (28)
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Time reparametrization
Rescaled scalar field at 77"

0.021 ]
0.01- ]
le 0.00f :
—001- ——  Reparametrized (tg) ]
r Fixed shift ]
_0.02} --- Phys.harm .bg. 7
L ! | I | ]
0 1 2 3 4
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Method of Lines

Discretizing all but the time coordinate transforms the original system of
PDEs into a system of ODEs. Now any ODE integrator can be applied:

Ut = g0 4 Atf(t;, ,a¥, 05,8269, ...)  (Euler method). (29)

Explicit (CFL condition), implicit (expensive) or mixed algorithms.
Study stability of the discretization with a von Neumann analysis.

Finite Differences

Here preferred over pseudo-spectral methods (more difficult to stabilize).
Spatial derivatives are substituted by an approximation to their
continuum value in terms of difference quotients:

ou . u(r+Az) —u(r — Ax) _ uiy1 —ui1 .
or Alalcgo 2Ax - 2B O(az). - (30)

Stencils can be centered or asymmetric (one-sided, one point off-centered).
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Numerical methods

Simulation setup

The numerical code uses:
e Method of Lines

e 4th order Runge-Kutta time integrator
e Finite Differences of orders 2, 4, 6 or 8

o Kreiss-Oliger dissipation
e Staggered grid: 7 = 0 and r = ry are avoided.

e Centered stencils at the boundaries with
e r = 0: parity conditions (regular); extrapolation (trumpet).
e r = 1g: extrapolating conditions.

The implementation has been tested with regular initial data and
Schwarzschild trumpet initial data, evolving:

o Gauge waves

e Scalar field perturbations

ial evolution of field initial data in spherical symmetry Alex Vano-Vinuales



Numerical methods

Scalar field on Schwarzschild spacetime - decay tails

A scalar field perturbation of a Schwarzschild black hole is expected
to decay at late times with a fall-off form

lim ®(¢,7r) o t? . (31)

t—+oo

In spherical symmetry the decay rate p takes the values:
e p = —3 along timelike surfaces and
e p = —2 along null surfaces (.£7).

The drift experienced by the variables is very slow, so that the decay
tails can be observed before the drift effects become relevant.
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