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Introduction 
Traversable wormholes are fascinating objects.!
  → space-time short cut, time travel.!

Problem: instability, use of exotic matter, great tidal force…!

→Stability of wormhole spacetime is the first priority.!

!

!

The Gauss-Bonnet term appears in the action as the ghost-free quadratic 
curvature correction term in the low-energy limit of heterotic superstring 
theory in ten dimensions.

LGB := R2 � 4Rµ⌫R
µ⌫ +Rµ⌫⇢�R

µ⌫⇢�
S =

1

16⇡G

Z
ddx

p
�g(R� 2�+ ↵LGB)

Einstein-Gauss-Bonnet gravity



Junction conditions

� = �d� 2

4⇡a

p
f + ȧ2,
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Master equation & Stability
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ȧ2 + V (a) = 0,Master eq for radial motion : 
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Einstein

V
00
(a0) < 0Unstable: 

Birkhoff’s theorem → !
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※Generalization of Einstein-Maxwell system→ T.K, Harada, 2015

ȧ2 + V (a) = 0,Master eq for radial motion : 

Schematic figure

Einstein

V
00
(a0) < 0Unstable: 

Birkhoff’s theorem → !
no gravitational waves from radial motion

Spherical wormhole!
 is unstable



k = 1. In the case of Λ > 0 and k = 1, f0 > 0 gives a constraint a0 < a(GR)
c on the size of

the wormhole throat, where

a(GR)
c :=

(
(d− 3)k

(d− 1)Λ̃

)1/2

. (3.26)

On the other hand, in the case of Λ < 0 and k = −1, f0 > 0 gives a0 > a(GR)
c . Combining

this inequality with Eq. (3.25), we obtain the range of the mass parameter admitting static

wormhole solutions; 0 < m < m(GR)
c for k = 1 with Λ > 0 and m < m(GR)

c (< 0) for k = −1
with Λ < 0, where

m(GR)
c :=

2k

d− 1

(
(d− 3)k

(d− 1)Λ̃

)(d−3)/2

. (3.27)

In Einstein gravity, a simple criterion for the stability of static solutions is available.
Substituting Eqs. (3.21) and (3.22) into Eq. (3.19), evaluating them at a = a0, we obtain

V ′′(a0) =− (d− 1)(d− 3)m

ad−1
0

=− 2(d− 3)k

a20
, (3.28)

where we used Eqs. (3.20) and (3.24). This simple expression clearly shows that the worm-
hole is stable only for k = −1 with m < 0 [14]. Existence and stability of static thin-shell
wormholes in Einstein gravity are summarized in Table 1.

Table 1: The existence and stability of Z2 symmetric static thin-shell wormholes made of
pure negative tension in Einstein gravity, where a(GR)

c and m(GR)
c are defined by Eqs. (3.26)

and (3.27), respectively.
Existence Possible range of a0 Stability

k = 1 Λ > 0 0 < m < m(GR)
c 0 < a0 < a(GR)

c Unstable
Λ ≤ 0 m > 0 a0 > 0 Unstable

k = 0 Λ ≥ 0 None – –
Λ < 0 m = 0 a0 > 0 Marginally stable

k = −1 Λ ≥ 0 None – –

Λ < 0 m < m(GR)
c (< 0) a0 > a(GR)

c Stable
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Classification

k=1,m>0 
unstable

k=-1, m<0!
stable

k=0,m=0 
marginally!

 stable
・・



Einstein-Gauss-Bonnet gravity

LGB := R2 � 4Rµ⌫R
µ⌫ +Rµ⌫⇢�R

µ⌫⇢�

: coupling constant, inverse string tension↵

(d � 5)

Vacuum solution

f(r) := k +
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2↵̃
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ds2d = �f(r)dt2 + f(r)�1dr2 + r2�ABdz

AdzB

↵ ! 0 in GR branch,
 −  : the GR branch!
＋ : non-GR branch GR branch
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ȧ2

a2
+

3k

a2
� f

a2

◆�
,

�4⇡Gp(a) =� ap
f + ȧ2
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Master equation& Stability analysis

V (a) :=f(a)� J(a)a2,

ȧ2 + V (a) = 0Master eq. for radial motion :
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Birkhoff’s theorem → no gravitational waves from radial motion



Instability 
for k = 1 with m > 0

Spherical wormhole!
 is unstable
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Figure: The potential

¯V (a) for d = 5, 6, 7 in Einstein and

Einstein-Gauss-Bonnet (EGB) gravity with k = 1, ↵ = 0.02,
m = 1, ⇤ = 1 and � = �0.1.

V (a)/a2

P (a0) > 0

V 00(a0) / �P (a0)



Effect of the Gauss-Bonnet term on Stability
GB shell wormhole turned out to be unstable. !
But, how unstable is it when compared with Einstein shell wormhole?

GB-potential is Steeper than Einstein-potential.

 sufficiently small       :

a0 = aE + a(1)✏+ a(2)✏
2 + . . . .

V 00
GB(a0) ' V 00

Einstein(aE)� k
8fE(aE)

a2E
✏ →   　 expansion up to 1st order :✏

↵

→ Perturbative analysis :     

✏ := ↵̃/a2E ⌧ 1



Classification

Static solutions exist? Stability

k = 1 m > 0 Yes Unstable

m  0 No –

m = 0 ⇤ � 0: No –

k = 0 ⇤ < 0: Yes Marginally Stable

m 6= 0 No –

m � 0 No –

m < 0 ⇤ � 0 : No –

�(2d� 5)/(2d� 1) < 4↵̃˜⇤ < 0: Yes Stable

k = �1 4↵̃˜⇤ = �(2d� 5)/(2d� 1): Yes Stable or Marginally Stable

�1 < 4↵̃˜⇤ < �(2d� 5)/(2d� 1) with d = 5: Yes Stable or Marginally Stable

�1 < 4↵̃˜⇤ < �(2d� 5)/(2d� 1) with d � 6: Yes

Stable, Marginally Stable

or Unstable



Summary
❖We construct thin-shell wormholes made of its tension in the arbitrary 

dimensional spherically, planar, and hyperbolically symmetric 
spacetimes in both Einstein and EGB gravity.!

❖Spherical shell wormhole is unstable in both Einstein and EGB 
gravity.!

❖Small GB term destabilizes spherical wormhole.!

❖We gave analytic classification for all possible wormhole cases.
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Stability for k = �1 with m < 0

Static equation (3� 4↵̃⇤̃)x2 � 2(d� 1)kxy +
1

4
(d� 1)2y2 + 16↵̃kx� 4d↵̃y + 16↵̃2 = 0
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2
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m
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where

x = x±(y) is solution to static eq.

x = xP(y) is solution to static eq.!
and represents marginal 

stability.
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⇤ � 0
x=x+(y)

x=x
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     x=xP(y)     x=x
min (y)

     x=x
max (y)

Solution does not exist
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(y) and x = x
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x = x+(y) does not enter physical domain.
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�2d� 5

2d� 1
< 4↵̃⇤̃ < 0

Any solution in !
the domain of                               is stable.y < yc(+)
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2d� 1
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y0 yc(+)

Intersection between                   and                     !
is located on  

x = x+(y) x = x�(y)
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Non-existence for k = 1 with m  0
k = �1 with m � 0{

V̄ 0 = � 1
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Perfect fluid
For k=1 with m>0, the wormhole with pure tension is unstable !

in both Einstein and EGB gravity.!
→ how about more general matter?!

→ e.g. perfect fluid

In Einstein gravity

V 00(a0) =� 2(d� 3)k

a20
� 2

I(a0)

ad�2
0

, I(a0) := (ad⌦⌦0)0a=a0
, ⌦(a)2 :=

4
d⇢(a)

2

4(d� 2)2
.

For k=1,!
If                   is satisfied, wormhole is unstable.             I(a0) > 0

Dust fluid (p=0) is such a matter field.!
→ dust shell wormhole is unstable.
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In Einstein-Gauss-Bonnet gravity

For k=1,!
If                   is satisfied, wormhole is unstable:I(a0) > 0

Dust fluid (p=0) is such a matter field.!
→ dust shell wormhole is unstable.


