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Preamble

Penrose Tribars at a defunct school in Seattle
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George Sparling Null geodesics



Complex numbers and space-time

Looking for complex structure

Relativists have been very successful in studying certain kinds
of space-times, where because of some structural feature of
the space-time in question, complex numbers and complex
analysis emerge as critical to the study of the geometry.

This is very apparent, for example in the study of
algebraically special space-times, where at the least
Cauchy-Riemann structures (those structures that the
boundary of a complex manifold inherits from the ambient
complex structure) play a big role.
In the case of self-dual space-times (which are necessarily
complex a priori, or real with non-Lorentzian metrics),
applications of complex analysis have led to spectacular
progress, for example in the construction of instantons.

There are enough examples of this kind that we are tempted to
ask if there are aspects of complex analysis present in
essentially any space-time.
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Complex numbers and space-time

From null geodesics to complex numbers

In the present talk, we will pinpoint three features of the
structure of null geodesics, that appear to reveal a role for
complex numbers. One is present in any dimension, the other
two, at least in their present formulation, work only in dimension
four.

We show that any null geodesic in four dimensional
space-time has a natural complexification.
Using the theory of Penrose limits, we assign to any null
geodesic in four-dimensional space-time a curve in the
complex (upper-half) plane. This opens up the possibility of
using uniformization theorems based on conformal
transformation theory, to tackle space-time geometry.
Finally, we will see, in any dimension, that the moduli
space of Penrose limits is at least as complicated as
Universal Teichmüller space, so at least as complicated as
string theory.
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Null geodesics

What are null geodesics?

Null geodesics model the limits of causality in space-time.
A space-time point that is connected by a null geodesic to a
point in the future can send a signal to that point, but only just:
the signal has to travel at the speed of light (also the speed of
gravity). Mathematically they are easy to define.

Following Einstein, space-timeM is equipped with a
smooth Lorentzian metric g of signature (1,n − 1) in
n-dimensions.
On T ∗M, the co-tangent bundle ofM, the metric gives a
Hamiltonian function, H = 2−1g−1(p,p) at each point
(x ,p), with x ∈M and p a co-vector at x .
Using the natural Poisson structure {, } of T ∗M, the
Hamiltonian gives rise to a vector field H ′, such that
H ′(f ) = {H, f}, for any smooth function f on T ∗M.
H is constant along the flow of H ′; the null geodesics are
just the curves of the flow along which H vanishes.
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Null geodesics

Nuances

The curves given by the Hamiltonian flow are naturally
parametrized, such that their tangent vectors are parallelly
propagated along the curves. It is often convenient to ignore
this parametrization, which can be achieved for example by
identifying trajectories through the same family of space-time
points, without selecting a particular tangent vector.

A key fact is that the trajectories are conformally invariant.
If g is replaced by fg, with f smooth and non-zero, then
H → f−1H and {f−1H, } = f−1{H, } − Hf−2{f , }, so we get the
relation (f−1H)′ = f−1H ′ − Hf−2f ′.

In particular, on H = 0, we get (f−1H)′ = f−1H ′ and the
null trajectories (not their parametrization) are the same.
A second key fact is that the canonical one-form α = p(θ)
of T ∗M, where θ is the canonical one-form ofM, passes
down to the space of unparametrized geodesics, up to
scale, giving that space a contact structure.
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Null geodesics

The dimension of the space of null geodesics

Through each point of space-time there is an
(n − 2)-dimensional family of null geodesics, specified by a
future pointing null tangent direction at that point.

The space of such directions is a sphere Sn−2 of n − 2
dimensions.
Then the space of null geodesics is represented by placing
an initial point on, say, a initial (n − 1)-dimensional Cauchy
surface and then choosing its direction, giving
(n − 1) + (n − 2) = 2n − 3 degrees of freedom.
This is always odd, as is appropriate for a contact manifold.
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Null geodesics

Null geodesics in Minkowski space-time

Minkowski space-time, denoted M∞ is an affine space; in affine
co-ordinates, the metric is just a fixed quadratic form on the
n-dimensional tangent space. The null geodesics are then the
straight lines with null tangent direction at every point.

Four dimensional Minkowski space-time is special!
In any dimension n ≥ 3, the space of null geodesics at a point
is a (n − 2)-sphere with a natural conformal structure, induced
by restricting the metric to the null tangent vectors at that point.

In dimension four, the space of null geodesics through any
point is a two-sphere. This two-sphere then has a natural
conformal structure, so also a natural complex structure,
so is a Riemann sphere.
Then the space of null geodesics, denoted PN∞, has a
unique Cauchy-Riemann structure, such that every point of
Minkowski space-time acquires its natural Riemann sphere
structure from the Cauchy-Riemann structure.
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The twistor perspective

The five dimensional hyperquadric

Twistor theory precisely describes and encapsulates this
hyperquadric.

Twistor space, T, is a four-dimensional complex vector
space, equipped with a pseudo-hermitian form of signature
(2,2).
The space PN is the five-dimensional space of
one-dimensional subspaces of T that are totally null.
Conformally compactified Minkowski space-time, denoted
M, is the four-dimensional space of two-dimensional
subspaces of T that are totally null.
Then PN is naturally the space of null geodesics of M.
Given an element Z of PN, the corresponding null
geodesic is the set of all totally null two-dimensional
subspaces of T that contain Z as a subspace.
Distinct points X and Y of M are connected by a null
geodesic Z ∈ PN if and only if Z = X ∩ Y .
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The twistor perspective

The embedding

The space PT, called projective twistor space is the space
of one-dimensional subspaces of T.
PT is a complex projective three-space, so in particular is a
complex manifold of real dimension six.
The natural embedding of PN as an hypersurface in PT
gives PT its natural complex structure.
Then PN is the hyperquadric, the "flat model" for
Cauchy-Riemann geometry with a non-degenerate
Levi-form of signature (1,1).
Correspondingly, M, embeds into compact complex
Minkowski space-time, denoted K, the Grassmannian of all
two-planes in T. This space is the Klein quadric, a
non-singular quadric in complex projective five-space and
has a natural complex conformally flat conformal structure,
as does any non-singular quadric. Then the embedding of
M into K is conformal. Here K is a complexification of M.
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The twistor perspective

The quadric of Oskar Klein

The Klein quadric K is the space of all two-dimensional
subspaces of T, so also the space of all projective lines in PT.

If X and Y are distinct points of K, they are null related if
and only if X ∩ Y is one-dimensional, if and only if
X + Y 6= T. This gives K a natural conformally flat
conformal structure.
If X ∈ K, then X ∧ X is a one-dimensional subspace of the
six-dimensional space Ω2(T), so a point in the five
dimensional projective space PΩ2(T).
The embedding X ∈ K→ Y = X ∧ X ∈ PΩ2(T) has image
a non-singular quadric in PΩ2(T), with the projective
equation Y ∧ Y = 0, for Y ∈ Ω2(T).
Hence the name the Klein quadric!
Given a point Y of the Klein quadric, the space X such that
Y = X ∧ X, is the space of all Z ∈ T, such that Z ∧ Y = 0.
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The twistor perspective

The Klein quadric

The Klein quadric featuring a null geodesic, the intersection of a
pair of planes, a twistor plane and a dual twistor plane.
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The twistor perspective

The twistor hyper-quadric

The null projective twistor space as a hyper-quadric in complex
projective three-space.
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The twistor perspective

Real and complex points

The various kinds of projective lines in projective twistor space.
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The twistor perspective

Positive and negative frequency

The definition of massless quantum particles relies on fields
that propagate into one-half of twistor space.
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The twistor perspective

Recovering Minkowski: symmetry breaking

The natural symmetry group of T, denoted U(T) is the
pseudo-unitary group, isomorphic to U(2,2), consisting of all
automorphisms of the complex vector space T, preserving its
pseudo-hermitian structure.

U(T) is a real semi-simple Lie group of sixteen dimensions.
U(T) acts on M as the conformal group (dimension fifteen).

We recover Minkowski space-time by breaking the symmetry.
We select a point, denoted∞, of M.
Then Minkowski space-time M∞ is by definition the
complement of the null cone of∞, so is all X ∈M, such
that X +∞ = T.
The symmetry group of M∞ is reduced to the Weyl group
(of real dimension eleven), the Poincaré group together
with dilations.
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Schwarzschild

The null geodesics of Schwarzschild

The Schwarzschild metric, which physically represents the
gravitational field in the vacuum outside an isolated, static,
spherically symmetric body, of mass m, can be written:

g = r2(g1 − g2),

g1 =
(r − 2m)

r3

(
dt2 − r2dr2

(r − 2m)2

)
, g2 = dθ2 + sin2(θ)dφ2.

Here g2 is the metric of a unit sphere, the co-ordinates (θ, φ)
being the standard Euler angles.
Also, when r > 2m, t is a time variable and r a radial distance.
The null geodesics of Schwarzschild may be described as a
pair of geodesics, sharing the same affine parameter, one in
the two-space with metric g1 and the other in the two-space
with metric g2 (so the latter curve is just a great circle on the
sphere).
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Schwarzschild

The elliptic curve

By symmetry, we may restrict to the equatorial plane, where
θ = π

2 . Then the projection of the null geodesic into three
dimensions is given by a relation between the variables r and φ:

φ =

∫
dr√

L2r4 − r2 + 2mr
= −

∫
du√

L2 − u2 + 2mu3
, u = r−1.

Here L is a real constant. When L 6= 0 and 27L2m2 6= 1, this is
an elliptic integral. It follows that the generic null geodesics of
Schwarzshild naturally complexify to give a curve on a torus, a
complex curve of genus one: y2 = L2r4 − r2 + 2mr .
There are many kinds of null geodesics. If we focus on the case
that the light ray comes in from infinity, reaches a closest point
to the origin and then escapes to infinity again, then the
scattering angle is given by a period of the torus, the integral
over a closed curve beginning and ending with infinite r and
passing through the branch point, when r reaches its minimum
value at the largest real root of the cubic L2r3 − r + 2m = 0.
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Plane waves and Penrose limits

Null geodesics in general: Penrose limits

A null geodesic in an arbitrary space-time at first sight has no
structure, except that it is a certain kind of curve. However it
can be shown rather easily that it has a natural projective
structure. Apart from this nothing.

To see more structure, we have to look not just at the null
geodesic itself, but at its immediate neighborhood.
This will build in the key idea of null geodesic deviation.
Fortunately, Roger Penrose has shown us how to do this:
in the high-velocity limit, essentially obtained by "chasing
the null geodesic", the space-time around the null geodesic
takes a very specific form, called a Rosen plane wave.
Such metrics are characterized by the fact that they have
an homothety, a smooth dilation, fixing a null geodesic.
These waves originate in the work of Einstein, Brinkmann,
Baldwin, Jeffery and Rosen.
We take these to constitute our moduli space.
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Plane waves and Penrose limits

Brinkmann-Baldwin-Jeffery-Einstein-Rosen waves

Our moduli space is the ensemble of metrics of the form:

G = dudv + p(u)(x , x)du2 + g(u)(dx ,dx).

Here u and v are real variables; x ∈ V, a real vector space of
dimension n, so our space-time has dimension n + 2 (where,
for us, n > 0).

The symmetric tensors p(u) and g(u) depend smoothly on
u, with g(u) invertible.
The space-time metric G has signature (1 + r ,1 + s),
when the tensor g(u) has signature (r , s), with r + s = n.
In particular, G is Lorentzian if and only if g is definite.
On rescaling by a function a(u) 6= 0, putting dU = a(u)du,
we get a(u)G = dUdv + q(U)(x , x)dU2 + h(U)(dx ,dx),
where q(U)dU = p(u)du and h−1(U)dU = g−1(u)du.
So our class of metrics is conformally invariant under such
restricted conformal transformations.
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Plane waves and Penrose limits

The Brinkmann, Rosen and Kapadia forms

By suitable co-ordinate transformations, of the type:

(u, x , v)→ (u, y ,w), y = L(u)(x), w = v − q(u)(x , x),

where L(u) is linear and q(u) is a symmetric tensor, we can:
On the one hand reduce p(u) to zero.
This gives the Rosen plane wave metric:

G = dudv + g(u)(dx ,dx), det g(u) 6= 0.

On the other hand reduce g(u) to a constant invertible
matrix. This gives the Brinkmann form of the metric:

G = dudv + p(u)(x , x)du2 + g(dx ,dx).

Here g is a constant invertible symmetric bilinear form.
On the third hand, reduce g(u) to diagonal form and
simultaneously reduce the diagonal terms of p(u) to zero.
This gives the Kapadia form.

All these metrics depend on 1
2n(n + 1) smooth functions of u.
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Rosen space-times

The Schwarzian: a reminder

If f (u) is a three-times differentiable function, its Schwarzian,
denoted S(f ) is given by the formula:

4(f ′)2S(f ) = 2f ′f ′′′ − 3(f ′′)2.

Here a prime denotes differentiation with respect to u.
The Schwarzian has many nice elementary properties:

S(f ) = 0 iff f is fractional linear: (cu + d)f (u) = au + b, for
some constants (a,b, c,d) with ad − bc 6= 0.
If g is fractional linear, then S(g ◦ f ) = S(f ).
If x1 and x2 are linearly independent solutions of the linear
differential equation x ′′ = q(u)x , then S(x1x−1

2 ) = q.
(S(f ◦ g)− S(g))du2 = (S(f ) ◦ g)dg2.
If g is invertible: (S(f )− S(g))du2 = (S(f ◦ g−1) ◦ g)dg2.
Then S(f ) = S(g) if and only if f ◦ g−1 is fractional linear.
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Rosen space-times

The diagonal Rosen metrics

The diagonal Rosen metrics are hypothesized by various
theorists to play a dominant role near some singularities.
We write the diagonal Rosen metrics in the following form:

G = f ′(u)(dudv + h′(u)−1(dx ,dx)).

A prime denotes a derivative with respect to u; f ′(u) 6= 0 is a
conformal factor; h(u) is a diagonal symmetric matrix, with
invertible derivative. The covariant Riemann curvature tensor R
of G has the remarkably simple form: R = −du ∧ S ∧ du,
where S is the diagonal matrix: S = f ′(S(h)− S(f )I)(h′)−1.
Here I is the identity matrix and S(h) is the diagonal matrix,
whose k -th diagonal entry is the Schwarzian of the k -th
diagonal entry of h. The space-time is conformally flat if and
only if S(h) is pure trace if and only if each pair of diagonal
entries of h are related by a fractional linear transformation.
The Ricci tensor has at most one non-zero component, so the
space-time is always locally conformal to vacuum.
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Rosen space-times

The diagonal plane wave in four dimensions

In four dimensions, the diagonal plane wave metric is:

G = f ′(u)

(
dudv +

dx2

a′(u)
+

dy2

c′(u)

)
.

The covariant Riemann tensor is: R = du ∧ S ∧ du, with:

S = f ′
(

(S(a)− S(f ))
dx2

a′(u)
+ (S(c)− S(f ))

dy2

c′(u)

)
.

The Einstein tensor is (S(a) + S(c)− 2S(f ))du2.
The vacuum condition is S(a) + S(c) = 2S(f ).
The conformal curvature is −du ∧ C ∧ du, where we have:

2C = f ′(S(a)− S(c))

(
dx2

a′(u)
− dy2

c′(u)

)
.

In particular the space-time is conformally flat if and only if
S(a)− S(c) vanishes if and only if a ◦ c−1 is fractional
linear.
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Rosen space-times

The general Kapadia metric in four dimensions

In four dimensions, we can write the general Kapadia metric as:

G = f ′(u)

(
dudv − 2b(u)xydu2 +

dx2

a′(u)
+

dy2

c′(u)

)
.

Remarkably, the Einstein tensor is the same as in the diagonal
case, namely (S(a) + S(c)− 2S(f ))du2.
The Weyl tensor is now −du ∧ C ∧ du, where we have:

C =
f ′

2

(
(S(a)− S(c))

(
dx2

a′
− dy2

c′

)
+ 2b(u)dxdy

)
.

Now the metric is conformally flat if and only if both a ◦ c−1 is
fractional linear and b vanishes identically. Note that in four
dimensions, this is the fully general metric in our moduli space.
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Rosen space-times

The connection with Universal Teichmüller space

We see that naturally occurring in connection with Rosen
space-times is are diffeomorphisms from the real line to itself.

Particularly in connection with the conformal structure, we
see the emergence of relative diffeomorphisms and their
Schwarzians.
These are exactly the features of Universal Teichmüller
space, which in its simplest form is concerned with
diffeomorphisms from the circle to itself and the idea of
conformal welding: gluing the complex upper half-plane to
the lower by such a diffeomorphism of the boundary circle,
so as to produce a Riemann surface.
Here, in general, we would not expect necessarily to have
circular null geodesics, but otherwise the structure is
present. The Schwarzians then arise naturally in the
construction of quadratic differentials on the Riemann
surfaces.
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Rosen space-times

The geodesic flow of the Rosen space-times

The Rosen plane wave metric is G = dudv + g(u)(dx ,dx), with
u and v real and x ∈ V, a real vector space of dimension at
least one.

The contact one-form is α = rdu + sdv + p(dx), with r and
s real and p ∈ V∗.
The non-trivial Poisson brackets are: {r ,u} = {s, v} = 1
and {p,⊗x} = δ, the Kronecker delta tensor of V.
The Hamiltonian is H = 2rs + 2−1g−1(u)(p,p).
Hamilton’s equations are:

ṙ = {H, r} = −2−1(g−1)′(p,p), ṡ = {H, s} = 0, ṗ = {H,p} = 0,

u̇ = {H,u} = 2s, v̇ = {H, v} = 2r , ẋ = {H, x} = (g−1)(p, ).
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Rosen space-times

The null geodesics of the Rosen space-times

Let h be a symmetric tensor, such that h′ = g−1.
Generically the constant s is non-zero, so since u̇ = 2s, we
may use the variable u to parametrize the geodesic.
Also put p = 2sq, and integrate, giving:

x ′ = g−1(q, ), x − x0 = (h(u)− h(u0))(q, ),

v ′ = rs−1 = −g−1(q,q), v − v0 = −(h(u)− h(u0))(q,q).

Eliminating the vector q, we get an explicit formula for the
equation of the null cone through an arbitrary point (u0, x0, v0):

v − v0 = −(h(u)− h(u0))−1(x − x0, x − x0).

Note that in particular, the lines v = v0, x = x0, u arbitrary, are
always null geodesics, for any real v0 and x0.
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Rosen space-times

Null geodesics with s = 0

The null geodesics with s = 0, equivalently those with u
constant (since u̇ = 2s) have u,p and s constant and:

ṙ = {H, r} = −2−1(g−1)′(u0)(p,p), v̇ = {H, v} = 2r ,

ẋ = {H, x} = (g−1)(u0)(p, ), 0 = g−1(u0)(p,p),

r = r0 − 2−1z(g−1)′(u0)(p,p), v = v0 + 2r0z − 2−1z2(g−1)′(u0)(p,p),

x − x0 = zg−1(u0)(p, ), g(u0)(x − x0, x − x0) = 0.

For the Lorentzian metrics, g−1 is definite, so p = 0, r = r0,
x = x0 and v is arbitrary (unless r0 = 0, in which case the
geodesic is just a point), giving a single line through any given
point. Then for each fixed u, there are an n-dimensional family
of such lines, foliating the null hypersurface given by taking u
constant. In the flat case these lines form the null geodesics
emerging form the vertex of the null cone of the point at infinity
represented by the null hyperplane with constant u. As u varies,
these vertices themselves form a null geodesic at infinity.
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Rosen space-times

Symmetries and conformal symmetries for Rosen

For the general Rosen metric, we can write down (2n + 1)
independent symmetry vector fields:

H = ∂v , P = ∂x , Q = x∂v − 2−1h(∂x ), h′ = g−1.

These obey the real Heisenberg Lie algebra, hn, for n degrees
of freedom:

[P,⊗P] = 0, [Q,⊗Q] = 0, [H,P] = 0, [H,Q] = 0, [P,⊗Q] = δH.

When the metric is not flat, these are the only symmetries,
except in two special cases, where there is one extra symmetry.
Generically, there is exactly one additional independent
conformal symmetry, the homothety D = 2v∂v + x(∂x ), which
obeys the relations [D,P] = −P, [D,Q] = −Q and
[D,H] = −2H, so gives a natural grading of the Heisenberg
algebra. Note that the dilation vanishes precisely on the null
geodesic, x = 0, v = 0, u arbitrary.
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Rosen space-times

The symmetry group action on null geodesics

The symmetry group of the generic Rosen space-time is the
real Heisenberg group, Hn, for n degrees of freedom, which has
dimension (2n + 1).

This is the same as the dimension of the space of null
geodesics.
The symmetries do not change the variable u, so the
special null geodesics with u constant are mapped into
themselves. In the Lorentzian case of interest, the null
geodesics with u fixed form an homogeneous space for the
group Hn, so the isotropy group is n + 1 dimensional.
Remarkably the action on the remaining geodesics, so
those with u varying is transitive.
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Penrose limits

Penrose limits and the theorem of Alekseevski

We have noted above that the Rosen space-times all have a
homothety or dilation, a conformal Killing vector that
reproduces the metric up to a constant scaling.
Also this dilation leaves invariant a null geodesic.
This is no accident, by a theorem of Alekseevski:

Theorem
If a space-time admits a smooth dilation group, leaving invariant
a null geodesic, then the space-time is Rosen.

Penrose obtains his limiting space-times by creating a suitable
dilation around a null geodesic, so following Alekseevski, we
should not be surprised that the Penrose limit is Rosen!
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Penrose limits

Penrose’s construction

Let a spacetimeM be given with Lorentzian metric g and in it a
null geodesic, denoted L.

Embed L locally in a non-rotating congruence of null
geodesics, so L is an integral curve of an hypersurface
orthogonal vector field la (we use abstract indices in the
style of Penrose).
This can always be done, locally, for example, by picking a
timelike world-line through a point of L and forming the
congruence by taking the generators of the future null
cones of the points of the world-line.
Choose co-ordinates, (u, v , x i), such that l = ∂u and
la = m∂av , for some non-zero function m. So g(l , l) = 0
and la∂alb = klb, for some scalar k , where ∂a is the
Levi-Civita connection of g, so the metric has the form:

g = 2m(u, v , x i)(du)(dv) + β(u, v , x i ,dv ,dx j).
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Penrose limits

The grading

Finally after replacing u by a suitable function U(u, v , x j), if
necessary, we can arrange that the vector field ∂v be null, so
the metric takes the form:

g = 2m(u, v , x)(du)(dv) + 2b(u, v , x)(dx)(dv) + c(u, v , x)(dx ,dx).

Here, we may regard x as a vector in a vector space V of n
dimensions. Then b takes values in V∗, whereas c is a
symmetric tensor, taking values in (V∗)2.
Also, at worst after translating co-ordinates, we may assume,
without loss of generality that our original null geodesic L is
given by the equations v = 0 and x = 0, with u arbitrary.

Now we introduce a grading on smooth functions and their
differentials, assigning weights zero to u, one to x and two
to v , effectively grading the metric in terms of its Taylor
series expansion around the null geodesic given by v = 0
and x = 0.
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Penrose limits

Going to the limit

Then the least weight possible weight of the terms of g is two
and we have an expansion: g = g2 + g3 + g4 + . . ., where gk
has integer grade k , for each k ≥ 2. In particular, for the terms
g2, of lowest weight, we have the expression:

g2 = 2m(u,0,0)(du)(dv) + c(u,0,0)(dx ,dx).

Then g2 is the Penrose limit and, by inspection, is a Rosen
plane-wave space-time. We can formalize this as a limit by
invoking the grading vector field D = 2v∂v + x(∂x ), which
leaves the null geodesic L invariant. We have:

exp(tD)(gk ) = tkgk , lim
t→0+

t−2 exp(tD)g = g2.

Geometrically, we are focussing on a smaller and smaller
tubular neighborhood around the null geodesic, blowing up until
all features of the metric tensor gab are lost except its values on
the null geodesic L itself.
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Penrose limits

The ambiguity in the Penrose limit

We have the following theorem, describing the ambiguity in the
various ways we can construct a Penrose limit for a given null
goedesic:

Theorem
Any two Penrose limits of a space-time along the same null
geodesic are related by an explicit diffeomorphism.
The set of Penrose limits coming from the same geodesic is an
orbit of the Heisenberg group of two degrees of freeodm
In the standard Rosen co-ordinate system, the infinitesimal
generators of the group are the vector fields:

P = v∂x , Q = x∂u, H = v∂u.
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Penrose limits

The information in the Penrose limit

The fact that the Penrose limit gives the Rosen form of the
plane wave rather than say the Brinkmann form is to us very
significant.

The metric coefficients of the Rosen form are directly
related to all quantities of interest: the description of the
null geodesics, the action of the symmetries, etc.
This is to be compared with the Brinkmann form, which
requires the integration of equations of Riccati type to
determine these quantities.
In the Brinkmann form the metric coefficients themselves
directly determine the Riemann tensor, whereas in the
Rosen form the metric coefficients are potentials for these
quantities.
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Penrose limits

The complex curve in the half-plane

In four dimensions, the Penrose limit metric for a null geodesic
is written as (du)(dv) + g(u)(dx ,dx), where g(u) is a smooth
symmetric bilinear form on V, a two dimensional real vector
space.

Our complex curve comes first from factorizing the
quadratic g(u)(dx ,dx) as g(u)(dx ,dx) = |m(u)(dx)|2.
Here m(u) takes values in V∗ ⊗R C, the complexification of
the real dual space of V.
Taking a suitable real basis for V, we can write
m(u)(dx) = p(u)ds + q(u)dt , where s and t are the two
real components of the vector x .
Then the complex ratio λ(u) = p(u) : q(u) is relevant, up to
a real projective transformation. Here, since the metric
g(u) is definite, we have p(u)q(u)− q(u)p(u) 6= 0, so the
imaginary part of λ(u) has a fixed sign, so we obtain a
curve either in the upper or lower half-plane.
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Penrose limits

The complexification of the null geodesic

To see how to complexify a given null geodesic in an invariant
way, we find it convenient to introduce local twistor transport, in
the style of Penrose.

The local twistor bundle is a complex vector bundle T of
complex fiber dimension four, equipped with a
pseudo-hermitian structure of signature (2,2).
The bundle T has a preferred two dimensional sub-bundle
X , which is totally null and is construed as representing the
points of the space-timeM.
Then there is a natural one-form onM taking values in
X ∗ ⊗ T /X , given by the formula θ(X ) = idX mod X , for
any local section X of X .
Then θ is required to have maximal rank, which givesM a
canonical conformal structure, such that a tangent vector
V is non-null if and only if θ(V ) is invertible.
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Local twistors and the Sachs equations

Null geodesics and local twistors

In the local twistor language, a null geodesic is a curve
equipped with a one dimensional (totally null) sub-bundle Z of
the bundle X , such that Z ∧ dZ = 0, for any local section Z of
Z. The local twistor transport is integrable along the null
geodesic. At each point of the curve, we consider the space of
twistors W , such that W is orthogonal to Z . Then W ∧ Z
represents a complex point of the Klein quadric in the fiber at
the point, unless W itself is null, in which case it represents a
real point. Then ensemble of all such points in the fiber is a
Riemann sphere, with a preferred real circle and a preferred
real point on that circle representing X at that point. As we
move up the null geodesic, we parallelly propagate W , using
the local twistor connection, giving a natural mapping from the
Riemann sphere at one point to that at another and the
preferred real point moves around appropriately. In this way we
immerse the real null geodesic in a Riemann sphere.
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Local twistors and the Sachs equations

Null geodesic deviation

Underlying the Penrose limit are the famous Sachs equations,
which describe null geodesic deviation in four dimensions.
Sachs reduced these equations to the following:

ρ′ + ρ2 + |σ|2 + Φ00 = 0, σ′ + 2ρσ + Ψ0 = 0.

Here Ψ0 is the component of the Weyl spinor aligned with the
null geodesic and Φ00 is the component of the Ricci curvature
in the direction of motion. These are exactly the pieces of the
curvature tensor that are encoded in the Penrose limit. ρ is the
(real) rotation of a pencil of light rays abreast with a given null
geodesic and σ is the complex shear. We would expect that
these equations would be given by propagation of some
quantity up the null geodesic, but what? It cannot be local
twistor transport, or its tensor equivalent, which is the Cartan
conformal connection. Instead it emerges that the correct
notion is conformal Killing transport.
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Local twistors and the Sachs equations

Thank you!
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