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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

TT =
Cp

�g00(r)
(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2



The ordinary Tolman Temperature in 4D black hole 
[R.C.Tolman,Phys.Rev.35,904 (1930)]

Conservation 
law

The fluid eq. 

Trace

The first law 

Stefan-
Boltzmann law

Proper 
temperature

I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

TT =
Cp

�g00(r)
(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �f1(r)dt
2 + f2(r)dr

2
, (3)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u

µ =
dx

µ

d⌧

=

 
1p
f1(r)

, 0

!
. (4)

The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as

T

µ⌫ = (⇢+ p)uµ
u

⌫ + pg

µ⌫
, (5)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4
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4

from Eqs. (3), (5), and (9).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (12)

and then employing Eqs. (10) and (11), Eq. (12) is simplified as

@rpr +
@rf

2f
pr = �

✓
1

2r
+

3@rf

4f

◆
T

µ
µ . (13)

So the above equation is easily solved as

pr =
1

f

2

✓
C0 +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (14)

where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (10) and (11),

⇢ : proper energy density,

p : proper pressure

pr : the radial pressure,

pt : the tangential pressure,

pt =
1

f

2

✓
C0 �

f

2

4
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (15)

⇢ =
3

f

2

✓
C0 �

f

2

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
. (16)

Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.

III. THE PROPER TEMPERATURE FROM TRACE ANOMALY-INDUCED

STEFAN-BOLTZMANN LAW

In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential
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if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional
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can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon
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if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

TT =
Cp

�g00(r)
(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon
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where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (11)

where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get

@r(f1p) =
1

2
T

µ
µ @rf1. (12)

The resulting equation (12) is easily solved as

p =
1

f1

✓
C0 +

1

2

Z
T

µ
µ df1

◆
, (13)

and

⇢ =
1

f1

✓
C0 � f1T

µ
µ +

1

2

Z
T

µ
µ df1

◆
, (14)

where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten
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if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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alized Tolman temperature which can be reduced to the conventional Tolman temperature
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will be shown that the equivalence principle survives at the horizon thanks to the quantum
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Let us now express the proper energy density and pressures formally in terms of the trace
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Eq. (3). Additionally, from Eqs. (10) and (11),

⇢ : proper energy density,

p : proper pressure

pr : the radial pressure,

pt : the tangential pressure,

pt =
1

f

2

✓
C0 �

f

2

4
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (15)

⇢ =
3

f

2

✓
C0 �

f

2

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
. (16)

Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.

III. THE PROPER TEMPERATURE FROM TRACE ANOMALY-INDUCED

STEFAN-BOLTZMANN LAW

In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential

6

from Eqs. (3), (5), and (9).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (12)

and then employing Eqs. (10) and (11), Eq. (12) is simplified as

@rpr +
@rf

2f
pr = �

✓
1

2r
+

3@rf

4f

◆
T

µ
µ . (13)

So the above equation is easily solved as

pr =
1

f

2

✓
C0 +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (14)

where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (10) and (11),

⇢ : proper energy density,

p : proper pressure

pr : the radial pressure,

pt : the tangential pressure,

pt =
1

f

2

✓
C0 �

f

2

4
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (15)

⇢ =
3

f

2

✓
C0 �

f

2

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
. (16)

Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.

III. THE PROPER TEMPERATURE FROM TRACE ANOMALY-INDUCED

STEFAN-BOLTZMANN LAW

In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential

6

I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as
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p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature
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, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman
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horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth
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and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon
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0. Note that the flux is also calculated as F = �Tµ⌫u
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⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
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which is reduced to
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Next, the trace equation is given as
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where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten
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if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as
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frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
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respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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0. Note that the flux is also calculated as F = �Tµ⌫u
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from Eqs. (3), (5), and (9).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

TT =
Cp

�g00(r)
(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon
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0. Note that the flux is also calculated as F = �Tµ⌫u
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⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
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which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as
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where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get
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where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten
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Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �f1(r)dt
2 + f2(r)dr

2
, (3)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u

µ =
dx

µ

d⌧

=

 
1p
f1(r)

, 0

!
. (4)

The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as

T

µ⌫ = (⇢+ p)uµ
u

⌫ + pg

µ⌫
, (5)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get

✓
@U

@V

◆

T

= T

✓
@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,

✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (20)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

7

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
✓
@U

@V

◆

T

= T

✓
@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,
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=
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◆

V

+ 2
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V

, (20)

and ✓
@pr
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◆

V

=
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@pt

@T

◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

p = �T

4 (26)

respectively. The Stefan-Boltzmann constant � comes from the integration constant

which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the
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respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless
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the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

⇢ = p = �T

2 (3)

T

µ
µ = 0 (4)

T

µ
µ 6= 0 (5)

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �f1(r)dt
2 + f2(r)dr

2 (6)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u

µ =
dx

µ

d⌧

=

 
1p
f1(r)

, 0

!
. (7)

The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as

T

µ⌫ = (⇢+ p)uµ
u

⌫ + pg

µ⌫
, (8)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

4

from Eqs. (3), (5), and (9).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (12)

and then employing Eqs. (10) and (11), Eq. (12) is simplified as

@rpr +
@rf

2f
pr = �

✓
1

2r
+

3@rf

4f

◆
T

µ
µ . (13)

So the above equation is easily solved as

pr =
1

f

2

✓
C0 +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (14)

where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (10) and (11),

⇢ : proper energy density,

p : proper pressure

pr : the radial pressure,

pt : the tangential pressure,

pt =
1

f

2

✓
C0 �

f

2

4
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (15)

⇢ =
3

f

2

✓
C0 �

f

2

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
. (16)

Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

T =
C0p
�f(r)

(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

p = �T

4 (27)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (24) is not necessarily positive definite thanks to the trace anomaly.

From Eqs. (24), (27), and (26), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
, (28)

and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(29)

by using Eqs. (14), (16), and (17). In the absence of the trace anomaly, the proper tem-

perature (29) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (29) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

a

where C0 = �T

4
H, � is the Stefan-Boltzmann constant,

where f = �g00(r),

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (5) into Eq. (29), we obtain

T =
1

8⇡M
p

f(r)

"
1� 28

✓
2M

r

◆6

+ 48

✓
2M

r

◆7

� 21

✓
2M

r

◆8
#1/4

, (30)
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (11)

where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get

@r(f1p) =
1

2
T

µ
µ @rf1. (12)

The resulting equation (12) is easily solved as

p =
1

f1

✓
C0 +

1

2

Z
T

µ
µ df1

◆
, (13)

and

⇢ =
1

f1

✓
C0 � f1T

µ
µ +

1

2

Z
T

µ
µ df1

◆
, (14)

where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten

5

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as
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!
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µ is the spacelike unit normal vector satisfying n
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µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
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n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
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@V

◆

T

= T

✓
@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,
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@⇢

@T

◆

V

=

✓
@pr
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◆

V

+ 2
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@pt

@T

◆

V

, (20)

and ✓
@pr

@T

◆

V

=

✓
@pt
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◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

7

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
✓
@U

@V

◆

T

= T

✓
@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,
✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (20)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

p = �T

4 (26)

respectively. The Stefan-Boltzmann constant � comes from the integration constant
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✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (20)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

p = �T

4 (26)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

7

the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

⇢ = p = �T

2 (3)

T

µ
µ = 0 (4)

T

µ
µ 6= 0 (5)

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �f1(r)dt
2 + f2(r)dr

2 (6)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u

µ =
dx

µ

d⌧

=

 
1p
f1(r)

, 0

!
. (7)

The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as

T

µ⌫ = (⇢+ p)uµ
u

⌫ + pg

µ⌫
, (8)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

4

from Eqs. (3), (5), and (9).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (12)

and then employing Eqs. (10) and (11), Eq. (12) is simplified as

@rpr +
@rf

2f
pr = �

✓
1

2r
+

3@rf

4f

◆
T

µ
µ . (13)

So the above equation is easily solved as

pr =
1

f

2

✓
C0 +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (14)

where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (10) and (11),

⇢ : proper energy density,

p : proper pressure

pr : the radial pressure,

pt : the tangential pressure,

pt =
1

f

2

✓
C0 �

f

2

4
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
, (15)

⇢ =
3

f

2

✓
C0 �

f

2

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆
. (16)

Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.

III. THE PROPER TEMPERATURE FROM TRACE ANOMALY-INDUCED

STEFAN-BOLTZMANN LAW

In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

T =
C0p
�f(r)

(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

p = �T

4 (27)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (24) is not necessarily positive definite thanks to the trace anomaly.

From Eqs. (24), (27), and (26), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
, (28)

and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(29)

by using Eqs. (14), (16), and (17). In the absence of the trace anomaly, the proper tem-

perature (29) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (29) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

a

where C0 = �T

4
H, � is the Stefan-Boltzmann constant,

where f = �g00(r),

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (5) into Eq. (29), we obtain

T =
1

8⇡M
p

f(r)

"
1� 28

✓
2M

r

◆6

+ 48

✓
2M

r

◆7

� 21

✓
2M

r

◆8
#1/4

, (30)
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

TT =
Cp

�g00(r)
(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be
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C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth
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�g00(r)

, (3)
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tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (11)

where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get

@r(f1p) =
1

2
T

µ
µ @rf1. (12)

The resulting equation (12) is easily solved as

p =
1

f1

✓
C0 +

1

2

Z
T

µ
µ df1

◆
, (13)

and

⇢ =
1

f1

✓
C0 � f1T

µ
µ +

1

2

Z
T

µ
µ df1

◆
, (14)

where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten

5

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �f1(r)dt
2 + f2(r)dr

2
, (3)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u

µ =
dx

µ

d⌧

=

 
1p
f1(r)

, 0

!
. (4)

The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as

T

µ⌫ = (⇢+ p)uµ
u

⌫ + pg

µ⌫
, (5)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get

✓
@U

@V

◆

T

= T

✓
@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,

✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (20)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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In Section II, in the presence of the trace anomaly, we will derive a trace anomaly-induced

Stefan-Boltzmann law by using the first law of thermodynamics and the nice property of

the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

⇢ = �T

2 (4)

p = �T

2 (5)

T

µ
µ = 0 (6)

T

µ
µ 6= 0 (7)

� : Stefan-Boltzmann constant

C0p
�
: Hawking temperature

ex) T µ
⌫ ⇠ R

⇢ < 0

⇢ = �T

2

T = ?

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 (8)

4

(1974)

the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as
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µ =
dx
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The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as
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µ⌫ = (⇢+ p)uµ
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⌫ + pg
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, (8)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,
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µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

4

from Eqs. (3), (5), and (9).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (12)

and then employing Eqs. (10) and (11), Eq. (12) is simplified as

@rpr +
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1

2r
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3@rf

4f

◆
T

µ
µ . (13)

So the above equation is easily solved as

pr =
1

f
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Z r
f
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(�2f + 3r@rf)T

µ
µ dr

◆
, (14)

where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (10) and (11),

⇢ : proper energy density,

p : proper pressure

pr : the radial pressure,

pt : the tangential pressure,

pt =
1

f
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4
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µ
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Z r
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µ
µ dr
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, (15)
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µ
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4r
(�2f + 3r@rf)T

µ
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◆
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

T =
C0p
�f(r)

(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

p = �T

4 (27)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (24) is not necessarily positive definite thanks to the trace anomaly.

From Eqs. (24), (27), and (26), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
, (28)

and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(29)

by using Eqs. (14), (16), and (17). In the absence of the trace anomaly, the proper tem-

perature (29) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (29) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

a

where C0 = �T

4
H, � is the Stefan-Boltzmann constant,

where f = �g00(r),

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (5) into Eq. (29), we obtain

T =
1

8⇡M
p

f(r)

"
1� 28

✓
2M

r

◆6

+ 48

✓
2M

r

◆7

� 21

✓
2M

r

◆8
#1/4

, (30)
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (11)

where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get

@r(f1p) =
1

2
T

µ
µ @rf1. (12)

The resulting equation (12) is easily solved as

p =
1

f1

✓
C0 +

1

2

Z
T

µ
µ df1

◆
, (13)

and

⇢ =
1

f1

✓
C0 � f1T

µ
µ +

1

2

Z
T

µ
µ df1

◆
, (14)

where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten

5

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �f1(r)dt
2 + f2(r)dr

2
, (3)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u

µ =
dx

µ

d⌧

=

 
1p
f1(r)

, 0

!
. (4)

The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as

T

µ⌫ = (⇢+ p)uµ
u

⌫ + pg

µ⌫
, (5)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get

✓
@U

@V

◆

T

= T

✓
@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,

✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (20)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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In Section II, in the presence of the trace anomaly, we will derive a trace anomaly-induced

Stefan-Boltzmann law by using the first law of thermodynamics and the nice property of

the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

⇢ = �T

2 (4)
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2 (5)
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µ
µ = 0 (6)

T

µ
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!
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The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is
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, (8)
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Let us now express the proper energy density and pressures formally in terms of the trace
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where C0 is an integration constant which is actually identified with C0 = (⇡2
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

T =
C0p
�f(r)

(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

p = �T

4 (27)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (24) is not necessarily positive definite thanks to the trace anomaly.

From Eqs. (24), (27), and (26), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
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and it is compactly written in terms of the trace anomaly as

T =
1
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1/4
p
f

✓
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3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(29)

by using Eqs. (14), (16), and (17). In the absence of the trace anomaly, the proper tem-

perature (29) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (29) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

a

where C0 = �T

4
H, � is the Stefan-Boltzmann constant,

where f = �g00(r),

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (5) into Eq. (29), we obtain

T =
1

8⇡M
p

f(r)

"
1� 28

✓
2M

r

◆6

+ 48

✓
2M

r

◆7

� 21

✓
2M

r

◆8
#1/4

, (30)
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (11)

where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get

@r(f1p) =
1

2
T

µ
µ @rf1. (12)

The resulting equation (12) is easily solved as

p =
1

f1

✓
C0 +

1

2

Z
T

µ
µ df1

◆
, (13)

and

⇢ =
1

f1

✓
C0 � f1T

µ
µ +

1

2

Z
T

µ
µ df1

◆
, (14)

where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten

5

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

II. TOLMAN TEMPERATURE FROM TRACE ANOMALY-INDUCED STEFAN-

BOLTZMANN LAW

We start with a two-dimensional line element given as

ds

2 = �f1(r)dt
2 + f2(r)dr

2
, (3)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u

µ =
dx

µ

d⌧

=

 
1p
f1(r)

, 0

!
. (4)

The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as

T

µ⌫ = (⇢+ p)uµ
u

⌫ + pg

µ⌫
, (5)

where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get

✓
@U

@V

◆

T

= T

✓
@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,

✓
@⇢
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◆

V
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✓
@pr
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◆

V

+ 2
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@pt

@T

◆

V

, (20)

and ✓
@pr

@T
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V

=

✓
@pt

@T

◆

V

. (21)

Plugging Eqs. (20) and (21) into Eq. (19), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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In Section II, in the presence of the trace anomaly, we will derive a trace anomaly-induced

Stefan-Boltzmann law by using the first law of thermodynamics and the nice property of

the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.

⇢ = �T

2 (4)
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2 (5)
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µ
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BOLTZMANN LAW

We start with a two-dimensional line element given as

ds
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if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

T =
C0p
�f(r)

(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

p = �T

4 (27)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (24) is not necessarily positive definite thanks to the trace anomaly.

From Eqs. (24), (27), and (26), the proper temperature is obtained as
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and it is compactly written in terms of the trace anomaly as
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by using Eqs. (14), (16), and (17). In the absence of the trace anomaly, the proper tem-

perature (29) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (29) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

a

where C0 = �T

4
H, � is the Stefan-Boltzmann constant,

where f = �g00(r),

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (5) into Eq. (29), we obtain

T =
1

8⇡M
p

f(r)

"
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p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (11)

where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get

@r(f1p) =
1

2
T

µ
µ @rf1. (12)

The resulting equation (12) is easily solved as

p =
1

f1

✓
C0 +

1

2

Z
T

µ
µ df1

◆
, (13)

and

⇢ =
1

f1

✓
C0 � f1T

µ
µ +

1

2

Z
T

µ
µ df1

◆
, (14)

where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten

5

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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We start with a two-dimensional line element given as

ds
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2 + f2(r)dr

2
, (3)

where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as

u
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dx
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=

 
1p
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, 0
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. (4)
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0. Note that the flux is also calculated as F = �Tµ⌫u
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n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t
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which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
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By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T
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From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,
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Plugging Eqs. (20) and (21) into Eq. (19), we obtain
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and then the equation is easily solved as
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µ
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From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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In Section II, in the presence of the trace anomaly, we will derive a trace anomaly-induced

Stefan-Boltzmann law by using the first law of thermodynamics and the nice property of

the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

T =
C0p
�f(r)

(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

p = �T

4 (27)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (24) is not necessarily positive definite thanks to the trace anomaly.

From Eqs. (24), (27), and (26), the proper temperature is obtained as
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and it is compactly written in terms of the trace anomaly as
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f
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µ
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(29)

by using Eqs. (14), (16), and (17). In the absence of the trace anomaly, the proper tem-

perature (29) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (29) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

a

where C0 = �T

4
H, � is the Stefan-Boltzmann constant,

where f = �g00(r),

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (5) into Eq. (29), we obtain

T =
1

8⇡M
p

f(r)

"
1� 28

✓
2M

r
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+ 48
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r
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� 21
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2M

r

◆8
#1/4

, (30)
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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where ⇢ = Tµ⌫u
µ
u

⌫ and p = Tµ⌫n
µ
n

⌫ are the local proper energy density and pressure,

respectively, and n

µ is the spacelike unit normal vector satisfying n

µ
nµ = 1 and n

µ
uµ =

0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t

t �T

r
r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (10)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (11)

where the trace of the energy-momentum tensor is not always zero. Combining Eqs. (10)

and (11), one can get

@r(f1p) =
1

2
T

µ
µ @rf1. (12)

The resulting equation (12) is easily solved as

p =
1

f1

✓
C0 +

1

2

Z
T

µ
µ df1

◆
, (13)

and

⇢ =
1

f1

✓
C0 � f1T

µ
µ +

1

2

Z
T

µ
µ df1

◆
, (14)

where the pressure and energy density are corrected by the trace anomaly, respectively. Note

that the conventional Stefan-Boltzmann law in the two dimensional flat space is actually

p = ⇢ = ↵T

2 which is valid only in the absence of the trace anomaly, where ↵ is the Stefan-

Boltzmann constant. From Eqs. (13) and (14), the pressure and energy density are no longer

symmetric. Moreover, there are many di↵erent expressions satisfying the anomaly relation

(11). To relate the pressure (13) and energy density (14) to the temperature uniquely, we

should find the Stefan-Boltzmann law which is compatible with the presence of the trace

anomaly.

Now, for our purpose, the first law of thermodynamics is considered as

dU = TdS � pdV (15)

where U , T , S, and V are the thermodynamic internal energy, temperature, entropy, and

volume in the proper frame, respectively, and U =
R
⇢dV . Thus, the first law is rewritten

5

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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where f1(r) and f2(r) are static functions and the metric is assumed to be asymptotically

flat. In the static system, the overall macroscopic velocity of radiation flow is zero, and the

velocity can be written as
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dx
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0. Note that the flux is also calculated as F = �Tµ⌫u
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⌫ which is zero in the static

fluid corresponding to the thermal radiation in equilibrium [10, 11]. Next, the covariant

conservation law of the energy-momentum tensor can be written as 2f1@rT r
r = (T t
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r )@rf1,

which is reduced to

2f1@rp = �(⇢+ p)@rf1. (6)

Next, the trace equation is given as

�⇢+ p = T

µ
µ , (7)

4

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
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By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T
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◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,
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and ✓
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Plugging Eqs. (20) and (21) into Eq. (19), we obtain
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2
T

µ
µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (24)

pt = �T

4 +
1

8
T

µ
µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless
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In Section II, in the presence of the trace anomaly, we will derive a trace anomaly-induced

Stefan-Boltzmann law by using the first law of thermodynamics and the nice property of

the temperature independence of the trace anomaly [18], and naturally obtain the gener-

alized Tolman temperature which can be reduced to the conventional Tolman temperature

if the traceless condition is met. In Section III, for the exactly soluble two-dimensional

Schwarzschild black hole, we shall show that the generalized Tolman temperature becomes

finite everywhere and it vanishes at the horizon without the Tolman factor. As a result, it

will be shown that the equivalence principle survives at the horizon thanks to the quantum

principle, and the above-mentioned questions in connection with the Tolman temperature

are also resolved. Finally, conclusion and discussion will be given in Section IV.
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The radiation is also regarded as a perfect fluid, so that the energy-momentum tensor is

written as
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, (8)
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µ
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µ
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⌫ are the local proper energy density and pressure,
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µ is the spacelike unit normal vector satisfying n

µ
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µ
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0. Note that the flux is also calculated as F = �Tµ⌫u
µ
n

⌫ which is zero in the static

4
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from Eqs. (3), (5), and (9).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (6), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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2f
@rf(pr + ⇢) = 0, (12)

and then employing Eqs. (10) and (11), Eq. (12) is simplified as
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So the above equation is easily solved as
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(�2f + 3r@rf)T

µ
µ dr

◆
, (14)

where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (10) and (11),

⇢ : proper energy density,

p : proper pressure

pr : the radial pressure,

pt : the tangential pressure,
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◆
. (16)

Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

T =
C0p
�f(r)

(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

p = �T

4 (27)

respectively. where � is the Stefan-Boltzmann constant. comes from the integration

constant which is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless

limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (24) is not necessarily positive definite thanks to the trace anomaly.

From Eqs. (24), (27), and (26), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
, (28)

and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(29)

by using Eqs. (14), (16), and (17). In the absence of the trace anomaly, the proper tem-

perature (29) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (29) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

a

where C0 = �T

4
H, � is the Stefan-Boltzmann constant,

where f = �g00(r),

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (5) into Eq. (29), we obtain

T =
1

8⇡M
p

f(r)

"
1� 28

✓
2M

r

◆6

+ 48

✓
2M

r

◆7

� 21

✓
2M

r

◆8
#1/4

, (30)
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I. INTRODUCTION

p =
1

3
⇢ (1)

Tolman showed that the proper temperature TTol measured by the local observer in a

static geometry depends on the gravitational potential g00(r) as

TTol

p
�g00(r) = C, (2)

where a constant C is determined by the boundary conditon [1, 2]. This relation can

be obtained from the Stefan-Boltzmann law with the help of tracelessness of the stress

tensor satisfying the covariant conservation law, assuming the perfect fluid of radiation

in thermal equilibrium. It is worth noting that the Tolman temperature is the “proper”

temperature measured in the local inertial frame, and it is divergent on the horizon unless

C = 0. Recently, the o↵-shell analysis of the Tolman temperature has been performed in

Ref. [3]. In 1974, Hawking showed that there exists the radiation from a black hole and

its temperature measured at spatial infinity is proportional to the surface gravity at the

horizon [4, 5]. Thanks to this result, the unknown constant C in the relation (2) can be

fixed as the Hawking temperature TH on the black hole background as TTol = TH/

p
�g00(r).

So, the Tolman temperature diverges on the horizon due to the redshift term.

However, after Hawking’s work, one may shown that the Hawking radiation is of relevance

to the trace anomaly of matter fields [6]. From a di↵erent new perspective, the relation

between Hawking radiation and the gravitational anomalies has been studied in Ref. [7, 8].

Since the relation (2) implies the traceless condition of the stress tensor, it is not a good

choice that the Hawking temperature is used as the boundary condition of the relation (2).

In addition, one derived the stress tensor of the Hawking radiation in Israel-Hartle-Hawking

state [9, 10], which has given us the fact that the proper energy density is finite everywhere

and, especially, negative near the horizon [11–16]. In the region where the proper energy

density is negative, the usual Stefan-Boltzmann law given by ⇢ ⇠ T

4 cannot be applied to

deriving the proper temperature, where ⇢ and T are the energy density and the temperature,

respectively. Even if we take the negative Stefan-Boltzmann constant as a tricky way, the

Tolman temperature cannot be successfully connected with the finite energy density by the

usual Stefan-Boltzmann law near the horizon because of the divergency of the temperature

2
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In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in

four dimensions we should deal with the anisotropic stress tensor for a spherically symmetric

black hole. So, in the spherically symmetric spacetime, the stress tensor (2) can be written

as [36, 37]

T

µ⌫ = (⇢+ pt)u
µ
u

⌫ + ptg
µ⌫ + (pr � pt)n

µ
(r)n

⌫
(r) (5)

where the proper velocity u

µ is a timelike unit vector satisfying u

µ
uµ = �1, nµ

(r) is the unit

spacelike vector in the radial direction, and n

µ
(✓) and n

µ
(�) are the unit normal vectors which

are orthogonal to n

µ
(r) satisfying gµ⌫n

µ
(i)n

µ
(j) = �ij and n

µ
(i)uµ = 0 with i, j = r, ✓,�. Thus the

spacelike unit normal vectors are obtained as

n

µ
(r) =

⇣
0,
p
f(r), 0, 0

⌘
, n

µ
(✓) =

✓
0, 0,

1

r

, 0

◆
, n

µ
(�) =

✓
0, 0, 0,

1

r sin ✓

◆
, (6)

respectively, with the proper velocity

u

µ =

 
1p
f(r)

, 0, 0, 0

!
(7)

when the frame is dropped from rest. Then from Eqs. (3), (5), (6), and (7), the proper

energy density and pressures can be explicitly calculated by using the following relations,

⇢ = Tµ⌫u
µ
u

⌫
, pr = Tµ⌫n

µ
(r)n

⌫
(r), pt = Tµ⌫n

µ
(✓)n

⌫
(✓) = Tµ⌫n

µ
(�)n

⌫
(�). (8)

The proper flux along x

i-direction can also be calculated by using the relation Fi =

�Tµ⌫u
µ
n

⌫
(i) which vanishes in thermal equilibrium [9, 10]. Moreover, the trace equation

becomes

T

µ
µ = �⇢+ pr + 2pt, (9)

and the useful relation from the anisotropic fluid is written as

pr � pt =
1

4
T

µ
µ , (10)

from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (11)
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µ
µ dr

◆
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Eq. (3). Additionally, from Eqs. (10) and (11),
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (5) [11].

In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as
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(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
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, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman
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horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth
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fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius
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Hawking temperature
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where the red/blue-shift factor comes from the time dilation in the presence of the gravi-
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can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the
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First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon
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In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in

four dimensions we should deal with the anisotropic stress tensor for a spherically symmetric

black hole. So, in the spherically symmetric spacetime, the stress tensor (2) can be written

as [36, 37]
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when the frame is dropped from rest. Then from Eqs. (3), (5), (6), and (7), the proper

energy density and pressures can be explicitly calculated by using the following relations,
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(i) which vanishes in thermal equilibrium [9, 10]. Moreover, the trace equation

becomes
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and the useful relation from the anisotropic fluid is written as
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from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4
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Eq. (3). Additionally, from Eqs. (10) and (11),
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element
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where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as

T

µ
µ = ↵(F + (2/3)2R) + �G 6= 0 (4)

where F = R
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[20–22, 24]. Note that there have been many applications of the conformal anomalies

to Hawking radiation and thermodynamics of black holes along with various derivations of

conformal anomalies [28–35]. The coe�cients ↵ and � are related to the number of conformal

fields such as real scalar fields NS, Dirac (fermion) fields NF, and vector fields NV, and they

are fixed as ↵ = (120(4⇡)2)�1(NS+6NF+12NV) and � = �(360(4⇡)2)�1(NS+11NF+62NV).

For the Ricci flat spacetime with a single conformal scalar, the trace anomaly is simply
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I. INTRODUCTION
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In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in

four dimensions we should deal with the anisotropic stress tensor for a spherically symmetric

black hole. So, in the spherically symmetric spacetime, the stress tensor (2) can be written

as [36, 37]
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when the frame is dropped from rest. Then from Eqs. (3), (5), (6), and (7), the proper

energy density and pressures can be explicitly calculated by using the following relations,
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The proper flux along x

i-direction can also be calculated by using the relation Fi =
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n
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(i) which vanishes in thermal equilibrium [9, 10]. Moreover, the trace equation

becomes

T

µ
µ = �⇢+ pr + 2pt, (9)

and the useful relation from the anisotropic fluid is written as
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from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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where C0 is an integration constant which is actually identified with C0 = (⇡2
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Eq. (3). Additionally, from Eqs. (10) and (11),
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.

III. THE PROPER TEMPERATURE FROM TRACE ANOMALY-INDUCED

STEFAN-BOLTZMANN LAW

In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential

pressure obtained in previous section. In order to get the proper temperature, we are now in
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so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (5) [11].

In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in
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II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
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1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as

T

µ
µ = ↵(F + (2/3)2R) + �G 6= 0 (4)

where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +R

2
/3,

and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ +R

2.

[20–22, 24]. Note that there have been many applications of the conformal anomalies

to Hawking radiation and thermodynamics of black holes along with various derivations of

conformal anomalies [28–35]. The coe�cients ↵ and � are related to the number of conformal

fields such as real scalar fields NS, Dirac (fermion) fields NF, and vector fields NV, and they

are fixed as ↵ = (120(4⇡)2)�1(NS+6NF+12NV) and � = �(360(4⇡)2)�1(NS+11NF+62NV).

For the Ricci flat spacetime with a single conformal scalar, the trace anomaly is simply
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

TT =
Cp

�g00(r)
(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
�g00(r)

, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in

four dimensions we should deal with the anisotropic stress tensor for a spherically symmetric

black hole. So, in the spherically symmetric spacetime, the stress tensor (2) can be written

as [36, 37]

T
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µ
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respectively, with the proper velocity

u

µ =

 
1p
f(r)

, 0, 0, 0

!
(7)

when the frame is dropped from rest. Then from Eqs. (3), (5), (6), and (7), the proper

energy density and pressures can be explicitly calculated by using the following relations,

⇢ = Tµ⌫u
µ
u
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, pr = Tµ⌫n

µ
(r)n

⌫
(r), pt = Tµ⌫n
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The proper flux along x

i-direction can also be calculated by using the relation Fi =

�Tµ⌫u
µ
n

⌫
(i) which vanishes in thermal equilibrium [9, 10]. Moreover, the trace equation

becomes

T

µ
µ = �⇢+ pr + 2pt, (9)

and the useful relation from the anisotropic fluid is written as

pr � pt =
1

4
T

µ
µ , (10)

from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (11)
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where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (10) and (11),
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.

III. THE PROPER TEMPERATURE FROM TRACE ANOMALY-INDUCED

STEFAN-BOLTZMANN LAW

In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential

pressure obtained in previous section. In order to get the proper temperature, we are now in
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so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (5) [11].

In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in
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when the frame is dropped from rest. Then from Eqs. (3), (6), (7), and (8), the proper
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I. INTRODUCTION

The proper temperature of the gravitating system of a perfect fluid in thermodynamic

equilibrium has been defined by the well-known Tolman temperature [1, 2]. In a static

geometry, it assumes: (i) the perfect fluid of radiation in thermal equilibrium, (ii) the co-

variant conservation law of energy-momentum tensor, (iii) the traceless condition of energy-

momentum tensor, (iv) the Stefan-Boltzmann law. The resulting temperature in the proper

frame is written as

TT =
Cp

�g00(r)
(1)

where the Tolman factor appears in the denominator and C is a constant determined by a

boundary condition. For example, for the Schwarzschild black hole, the constant used to be

determined by

C = TH

rµT
µ⌫ = 0 (2)

, where TH is the Hawking temperature of the black hole [3, 4]. As expected, the Tolman

temperature becomes the Hawking temperature at infinity, whereas it is infinite at the

horizon due to the blue-shifted Tolman factor which was discussed in Ref. [5]. It is worth

noting that the Tolman temperature is for the freely falling observer at rest rather than the

fixed observer who undergoes an acceleration [2]. For the fixed observer placed at the radius

r of the Schwarzschild black hole, the temperature can be expressed as the red/blue-shifted

Hawking temperature

TF =
THp
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, (3)

where the red/blue-shift factor comes from the time dilation in the presence of the gravi-

tational field at di↵erent places [6]. The fixed temperature is infinite at the horizon, which

can also be understood in terms of the Unruh e↵ect for the large black hole by keeping the

detector in place [7], since the Unruh temperature is infinite at the horizon because of the

infinite acceleration of the frame.

First, it would be interesting to note that the two temperatures (1) and (3) are the same

in spite of the apparently di↵erent physical backgrounds; the former is for the inertial frame

and the latter is for the fixed one. Second, the infinite Tolman temperature at the horizon

2

In two dimensions, one regarded the radiation flow as a perfect fluid [17]; however, in

four dimensions we should deal with the anisotropic stress tensor for a spherically symmetric

black hole. So, in the spherically symmetric spacetime, the stress tensor (2) can be written

as [36, 37]

T

µ⌫ = (⇢+ pt)u
µ
u

⌫ + ptg
µ⌫ + (pr � pt)n

µ
(r)n

⌫
(r) (5)

where the proper velocity u

µ is a timelike unit vector satisfying u

µ
uµ = �1, nµ

(r) is the unit

spacelike vector in the radial direction, and n

µ
(✓) and n

µ
(�) are the unit normal vectors which

are orthogonal to n

µ
(r) satisfying gµ⌫n

µ
(i)n

µ
(j) = �ij and n

µ
(i)uµ = 0 with i, j = r, ✓,�. Thus the

spacelike unit normal vectors are obtained as

n

µ
(r) =

⇣
0,
p
f(r), 0, 0

⌘
, n

µ
(✓) =

✓
0, 0,

1

r

, 0

◆
, n

µ
(�) =

✓
0, 0, 0,

1

r sin ✓

◆
, (6)

respectively, with the proper velocity

u

µ =

 
1p
f(r)

, 0, 0, 0

!
(7)

when the frame is dropped from rest. Then from Eqs. (3), (5), (6), and (7), the proper

energy density and pressures can be explicitly calculated by using the following relations,
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The proper flux along x

i-direction can also be calculated by using the relation Fi =

�Tµ⌫u
µ
n

⌫
(i) which vanishes in thermal equilibrium [9, 10]. Moreover, the trace equation

becomes

T

µ
µ = �⇢+ pr + 2pt, (9)

and the useful relation from the anisotropic fluid is written as

pr � pt =
1

4
T

µ
µ , (10)

from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2
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(pr � pt) +
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@rf(pr + ⇢) = 0, (11)
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where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4
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Eq. (3). Additionally, from Eqs. (10) and (11),
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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where C0 is an integration constant which is actually identified with C0 = (⇡2
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frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
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= T
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� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T
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� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,
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and ✓
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=
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Plugging Eqs. (20) and (21) into Eq. (19), we obtain
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2
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µ , (22)

and then the equation is easily solved as

⇢ = 3�T 4 � 3
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µ (23)

From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T
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3

8
T

µ
µ (24)

pt = �T
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µ (25)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as
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where there is no tangential work. From Eq. (17), one can get
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From Eqs. (10) and (11), the radial and tangential pressure are also determined as
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respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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frame can be changed only along the radial direction on the spherically symmetric black
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By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as
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Plugging Eqs. (19) and (20) into Eq. (18), we obtain
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respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡
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/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as
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and it is compactly written in terms of the trace anomaly as
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by using Eqs. (13), (14), and (15). In the absence of the trace anomaly, the proper tem-

perature (26) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (26) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

as C0 = �

1/4
TH, where � is the Stefan-Boltzmann constant defined earlier as � = ⇡

2
/90 for

the single conformal scalar field.

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (4) into Eq. (26), we obtain
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as
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limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (23) is not necessarily positive definite thanks to the trace anomaly.
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is
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frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from
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density to the proper temperature in the presence of the trace anomaly at any distance

outside the horizon. First of all, we note that the volume of the system in the radial proper

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (16)

where there is no tangential work. From Eq. (16), one can get
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By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T
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From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (9) and (10) take the following forms,
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Plugging Eqs. (19) and (20) into Eq. (18), we obtain
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and then the equation is easily solved as
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From Eqs. (9) and (10), the radial and tangential pressure are also determined as
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respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as
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and it is compactly written in terms of the trace anomaly as
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from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as
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r
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and then employing Eqs. (9) and (10), Eq. (11) is simplified as
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where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (9) and (10), the tangential pressure and energy density

can be written as
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.
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the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as
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by using Eqs. (13), (14), and (15). In the absence of the trace anomaly, the proper tem-

perature (26) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (26) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

as C0 = �

1/4
TH, where � is the Stefan-Boltzmann constant defined earlier as � = ⇡

2
/90 for

the single conformal scalar field.

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (4) into Eq. (26), we obtain
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as
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limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (23) is not necessarily positive definite thanks to the trace anomaly.
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is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.
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By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as
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from Eqs. (3), (4), and (8).

Let us now express the proper energy density and pressures formally in terms of the trace

anomaly for our purpose. Using Eq. (5), one can obtain the covariant conservation law for

the energy-momentum tensor written as

@rpr +
2

r

(pr � pt) +
1

2f
@rf(pr + ⇢) = 0, (12)

and then employing Eqs. (9) and (10), Eq. (11) is simplified as

@rpr +
@rf

2f
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So the above equation is easily solved as
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µ dr
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where C0 is an integration constant which is actually identified with C0 = (⇡2
/90)T 4

H from

Eq. (3). Additionally, from Eqs. (9) and (10), the tangential pressure and energy density

can be written as
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Note that these proper quantities are not new but just rewriting in terms of the trace anomaly

based on Eq. (3), however, they will be useful when we derive the proper temperature from

the generalized Stefan-Boltzmann law in next section.

III. THE PROPER TEMPERATURE FROM TRACE ANOMALY-INDUCED

STEFAN-BOLTZMANN LAW

In this section, we are going to derive the proper temperature on the four-dimensional

Schwarzschild background by using the energy density, the radial pressure, and tangential

pressure obtained in previous section. In order to get the proper temperature, we are now in

a position to obtain the generalized Stefan-Boltzmann law which relates the proper energy

density to the proper temperature in the presence of the trace anomaly at any distance

outside the horizon. First of all, we note that the volume of the system in the radial proper
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the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as
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and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(27)

by using Eqs. (13), (14), and (15). In the absence of the trace anomaly, the proper tem-

perature (26) is reduced to the usual Tolman temperature [1, 2], and the two integration

constants are merged into a single constant which can be determined at one stroke from the

boundary condition at infinity. However, on general grounds the Stefan-Boltzmann constant

and the integration constant from the conservation law should be determined independently

for the non-vanishing trace of stress tensor. From the fact that the proper temperature (26) is

coincident with the Hawking temperature TH at infinity, the constant C0 can be determined

as C0 = �

1/4
TH, where � is the Stefan-Boltzmann constant defined earlier as � = ⇡

2
/90 for

the single conformal scalar field.

Finally, let us calculate the explicit proper temperature for the Schwarzschild black hole

by taking into account the trace anomaly associated with Hawking radiation. Plugging the

trace anomaly (4) into Eq. (26), we obtain
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which can be factorized as
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as

T =
1
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(30)
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limit at the spatial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus

the positivity of the proportional constant is maintained and the proper energy density in

Eq. (23) is not necessarily positive definite thanks to the trace anomaly.
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is
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negative and finite  
near the horizon 

           

frame can be changed only along the radial direction on the spherically symmetric black

hole. Then, the thermodynamic first law can be written as

dU = TdS � prdV (17)

where there is no tangential work. From Eq. (17), one can get

✓
@U

@V

◆

T

= T
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@S

@V

◆

T

� pr. (18)

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T
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@pr

@T

◆

V

� pr. (19)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (10) and (11) take the following forms,
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and ✓
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Plugging Eqs. (20) and (21) into Eq. (19), we obtain
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and then the equation is easily solved as

⇢ = 3�T 4 � 3
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From Eqs. (10) and (11), the radial and tangential pressure are also determined as

pr = �T
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8
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µ (24)

pt = �T
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8
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respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of
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be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
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Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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The quantities in the square root in Eq. (27) can be factorized as
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and consequently the generalized Tolman temperature is obtained as

T =
1

8⇡M

s

1 +
2M

r

+

✓
2M

r

◆2

� 3

✓
2M

r

◆3

. (29)

T =
1

8⇡GM

q
1� 2M

r

(30)

7

be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly
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where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +
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2
/3 and G = R
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2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T
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µ =
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Rµ⌫⇢� =
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so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M
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where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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Note that the Tolman factor does not appear, which is compared to the form of the

conventional Tolman temperature (1). One of the most interesting things to distinguish

from the conventional behaviors of the Tolman temperature is that it is finite everywhere,

and it also has a maximum value of the temperature at rc ⇠ 4M as seen from Fig. 1.
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where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R
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applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE
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1
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= 1� 2M
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, (25)
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where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper
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where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
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Rµ⌫ +
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/3 and G = R
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2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T
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µ =

1
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so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M
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where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2
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conventional Tolman temperature (1). One of the most interesting things to distinguish

from the conventional behaviors of the Tolman temperature is that it is finite everywhere,

and it also has a maximum value of the temperature at rc ⇠ 4M as seen from Fig. 1.
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where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
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2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as
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µ =

1
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so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.
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Let us now study how the generalized Tolman temperature (24) actually works in the
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where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
R

µ⌫⇢�
Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].

4

Diverge at the horizon

Firewall-like object in the thermal equilibrium…??
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,

T =
1

8⇡M
p
f(r)

s

1� 4

✓
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r

◆3

+ 3

✓
2M

r

◆4

. (27)

The quantities in the square root in Eq. (27) can be factorized as

T =
1

8⇡M
p
f(r)
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and consequently the generalized Tolman temperature is obtained as

T =
1

8⇡M

s

1 +
2M

r

+
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2M

r
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r
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. (29)
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1
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FIG. 1. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.
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horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

Note that the Tolman factor does not appear, which is compared to the form of the

conventional Tolman temperature (1). One of the most interesting things to distinguish

from the conventional behaviors of the Tolman temperature is that it is finite everywhere,

and it also has a maximum value of the temperature at rc ⇠ 4M as seen from Fig. 1.

8

ordinary Tolman temperature

be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation

T
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
R

µ⌫⇢�
Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].

4

Diverge at the horizon

Firewall-like object in the thermal equilibrium…??

Violation of the equivalence principle…??
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,

T =
1

8⇡M
p
f(r)

s
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✓
2M

r
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+ 3
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The quantities in the square root in Eq. (27) can be factorized as

T =
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and consequently the generalized Tolman temperature is obtained as

T =
1

8⇡M

s

1 +
2M

r
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r
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FIG. 1. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.
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horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

Note that the Tolman factor does not appear, which is compared to the form of the

conventional Tolman temperature (1). One of the most interesting things to distinguish

from the conventional behaviors of the Tolman temperature is that it is finite everywhere,

and it also has a maximum value of the temperature at rc ⇠ 4M as seen from Fig. 1.

8

ordinary Tolman temperature

be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
R

µ⌫⇢�
Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as

T =
1

8⇡M
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1� 2M

r

◆ 6X
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n(n+ 1)

2
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r
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(29)

In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the

9
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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p
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The quantities in the square root in Eq. (27) can be factorized as
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and consequently the generalized Tolman temperature is obtained as
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FIG. 1. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.
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goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

Note that the Tolman factor does not appear, which is compared to the form of the

conventional Tolman temperature (1). One of the most interesting things to distinguish

from the conventional behaviors of the Tolman temperature is that it is finite everywhere,

and it also has a maximum value of the temperature at rc ⇠ 4M as seen from Fig. 1.
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ordinary Tolman temperature

be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
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Rµ⌫ +
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2
/3 and G = R
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Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
R

µ⌫⇢�
Rµ⌫⇢� =

M

2
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, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as

T =
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the

9
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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The quantities in the square root in Eq. (27) can be factorized as
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and consequently the generalized Tolman temperature is obtained as
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FIG. 1. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.
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FIG. 2. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

Note that the Tolman factor does not appear, which is compared to the form of the

conventional Tolman temperature (1). One of the most interesting things to distinguish

from the conventional behaviors of the Tolman temperature is that it is finite everywhere,

and it also has a maximum value of the temperature at rc ⇠ 4M as seen from Fig. 1.
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be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation

T
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
R

µ⌫⇢�
Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as

T =
1

8⇡M
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r

◆ 6X
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r
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the

9
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,

T =
1

8⇡M
p
f(r)

s

1� 4
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r
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+ 3
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2M

r

◆4

. (27)

The quantities in the square root in Eq. (27) can be factorized as
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, (28)

and consequently the generalized Tolman temperature is obtained as

T =
1

8⇡M

s

1 +
2M

r

+
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2M

r

◆2

� 3
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. (29)

T =
1

8⇡GM

q
1� 2M

r

(30)
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as

T =
1

8⇡M

"✓
1� 2M

r

◆ 6X

n=1

n(n+ 1)

2

✓
2M

r

◆n�1
#1/4

(29)

In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the
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be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation

T

µ
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
R

µ⌫⇢�
Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].

4

2M rc

r

TH

Tmax

T

FIG. 1. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (19) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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The quantities in the square root in Eq. (21) can be factorized as
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and consequently the generalized Tolman temperature is obtained as
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Note that the Tolman factor does not appear, which is compared to the form of the conven-

tional Tolman temperature (1). One of the most interesting things to distinguish from the

conventional behaviors of the Tolman temperature is that it is finite everywhere, and it also

7
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,

T =
1

8⇡M
p
f(r)

s
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+ 3
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2M

r

◆4

. (27)

The quantities in the square root in Eq. (27) can be factorized as
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and consequently the generalized Tolman temperature is obtained as

T =
1
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as

T =
1
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the
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be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
✓
1� 2M

r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
R

µ⌫⇢�
Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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FIG. 1. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (19) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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The quantities in the square root in Eq. (21) can be factorized as
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and consequently the generalized Tolman temperature is obtained as
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Note that the Tolman factor does not appear, which is compared to the form of the conven-

tional Tolman temperature (1). One of the most interesting things to distinguish from the

conventional behaviors of the Tolman temperature is that it is finite everywhere, and it also
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as

f(r) = f1(r) =
1

f2(r)
= 1� 2M

r

, (25)

f(r) = 1� 2M

r

(26)

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as
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1
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the

9

be given in section IV.

II. THE STRESS TENSOR FROM THE CONFORMAL ANOMALY

In this section, we will express the stress tensor in terms of the conformal anomaly

giving the non-trivial trace of the stress tensor for a conformally coupled scalar field. A

four-dimensional Schwarzschild black hole is governed by the line element

ds

2 = �
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r

◆
dt

2 +
1

1� 2M
r

dr

2 + r

2(d✓2 + sin2
✓d�

2) (2)

where the metric function is given by f(r) = 1�2GM/r. Before proceeding, we remind of the

established calculations for the energy density [11]. In particular, the exact thermal stress

tensor for a conformal scalar field was calculated by means of the Gaussian approximation
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms

of curvature invariants as T µ
µ = ↵(F +(2/3)2R)+�G, where F = R

µ⌫⇢�
Rµ⌫⇢� � 2Rµ⌫

Rµ⌫ +

R

2
/3 and G = R

µ⌫⇢�
Rµ⌫⇢� � 4Rµ⌫

Rµ⌫ + R

2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as

T

µ
µ =

1

2880⇡2
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µ⌫⇢�
Rµ⌫⇢� =

M

2

60⇡2
r

6
, (4)

so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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FIG. 1. The thick dotted curve is for the conventional Tolman temperature which is infinite at the

horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (19) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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p
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The quantities in the square root in Eq. (21) can be factorized as
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and consequently the generalized Tolman temperature is obtained as
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Note that the Tolman factor does not appear, which is compared to the form of the conven-

tional Tolman temperature (1). One of the most interesting things to distinguish from the

conventional behaviors of the Tolman temperature is that it is finite everywhere, and it also
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where the temperature is independent of f2. Indeed, there appeared nontrivial contribu-

tions to the temperature from the trace anomaly. Note that it is reduced to the conventional

Tolman temperature if the energy-momentum tensor is traceless, so that T = C/

p
f1(r),

where C =
p
C0/↵. In the asymptotic infinity, the trace parts in Eq. (24) vanish, and the

constant C0 can be determined by the usual boundary condition.

III. APPLICATION TO TWO-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

Let us now study how the generalized Tolman temperature (24) actually works in the

two-dimensional Schwarzschild black hole, where the metric is given as
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where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (24) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2
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The quantities in the square root in Eq. (27) can be factorized as
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the
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Note that the energy density is positive finite at infinity and it gives the well-defined Hawking

temperature which is consistent with the usual Stefan-Boltzmann law. On the other hand,

it is negative finite on the horizon, so that it is not straightforward to get the corresponding

proper temperature to the negative energy density. In that sense, the Stefan-Boltzmann law

is expected to be a non-trivial form at finite distances.

On the other hand, for the trace anomaly in four dimensions, it can be written in terms
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2 [20–22, 24]. Note that there have been many

applications of the conformal anomalies to Hawking radiation and thermodynamics of black

holes along with various derivations of conformal anomalies [28–35]. The coe�cients ↵ and

� are related to the number of conformal fields such as real scalar fields NS, Dirac (fermion)

fields NF, and vector fields NV, and they are fixed as ↵ = (120(4⇡)2)�1(NS + 6NF + 12NV)

and � = �(360(4⇡)2)�1(NS + 11NF + 62NV). For the Ricci flat spacetime with a single

conformal scalar, the trace anomaly is simply written as
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so that the trace for the exact stress tensor (3) is compatible with the conformal anomaly (4) [11].
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horizon, whereas the solid curve is for the generalized one which is finite everywhere and especially

goes to zero at the horizon. The maximum of the latter temperature Tmax occurs at rc ⇠ 4M in

our model. The constant is set to M = 1 for convenience. The infinite Tolman temperature at the

horizon was suppressed by taking into account the trace anomaly.

where M is the mass of black hole and the Newton constant is set to G = 1. Now, using

the explicit trace anomaly for the massless scalar field as T µ
µ = R/(24⇡) [16, 17], the proper

temperature (19) can be calculated by imposing the boundary condition of C0 = ↵/(8⇡M)2

which gives the Hawking temperature at infinity,
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The quantities in the square root in Eq. (21) can be factorized as

T =
1

8⇡M
p
f(r)

⇥

vuut
✓
1� 2M

r

◆ 
1 +

2M

r

+

✓
2M

r

◆2

� 3

✓
2M

r

◆3
!
, (22)

and consequently the generalized Tolman temperature is obtained as
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Note that the Tolman factor does not appear, which is compared to the form of the conven-

tional Tolman temperature (1). One of the most interesting things to distinguish from the

conventional behaviors of the Tolman temperature is that it is finite everywhere, and it also
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the
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By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T
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From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (9) and (10) take the following forms,
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Plugging Eqs. (19) and (20) into Eq. (18), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
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and then the equation is easily solved as
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From Eqs. (9) and (10), the radial and tangential pressure are also determined as
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3

8
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µ
µ (23)
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4 +
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8
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µ (24)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as
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and it is compactly written in terms of the trace anomaly as
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 Thanks to this formula, the temperature vanishes when the 
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Note that the Tolman factor is remarkably canceled out so that the proper temperature is
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can
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observer arrives at the horizon. Therefore, there does not exist 
firewall-like object in the thermal equilibrium of the blackhole 
system, and the equivalence principle is recovered at the 
horizon.  
In addition, ‘the general formalism of the trace-anomaly induced 
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Conclusions and  Discussions

The anomaly-
induced 
Stefan-

Boltzmann law

  Stefan-Boltzmann law should be modified with the trace of 
the energy-momentum tensor. So, when we calculate the 
temperature, we should use this modified Stefan-Boltzmann 
law. 
ex) Hawking radiation, Cosmology etc… 

The anomaly-
induced  
Tolman 

temperature

 Thanks to this formula, the temperature vanishes when the 
observer arrives at the horizon. Therefore, there does not exist 
firewall-like object in the thermal equilibrium of the blackhole 
system, and the equivalence principle is recovered at the 
horizon.  
In addition, ‘the general formalism of the trace-anomaly induced 
Tolman T’ for 2D black hole is in  [Eur.Phys.J.C 75 (2015) 549]. 
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In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking

temperature on the horizon does not appear if we take into account non-trivial trace. As

seen from Fig. 1, the behavior of the temperature (29) shows that it is finite everywhere

and it approaches the Hawking temperature at infinity. In particular, it is vanishing on the

horizon so that the proper observer does not get excited particles. It implies that the high

frequency quanta like the firewall beyond the Planck scale could not be found on the horizon

for the static black holes in thermal equilibrium, which is compatible with the result that

the equivalence principle is recovered at the horizon [39].

As a comment for Fig. 1, the fact that the divergent dashed curve near the horizon can

be made finite is reminiscent of the finite Hawking temperature in the noncommutative

Schwarzschild black hole in that the temperature defined from the non-commutative space-

time which is one of the quantum-mechanical considerations of the geometry gives the finite

temperature with the help of the cuto↵ [40]. It is also very similar to the resolution of the

divergent problem in the classic black body radiation. The divergent energy density from

the Rayleigh-Jeans law was made finite after the suitable quantum correction.

IV. CONCLUSION AND DISCUSSION

At first sight, the proper temperature seems to be divergent at the horizon because of the

infinite blue-shift of Hawking radiation. However, the existence of Hawking radiation implies

that the stress tensor is no more traceless thanks to the conformal anomaly, so that the

Stefan-Boltzmann law assuming the traceless stress tensor is generalized to the extent of the

9

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (18)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (9) and (10) take the following forms,
✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (19)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (20)

Plugging Eqs. (19) and (20) into Eq. (18), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (21)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (22)

From Eqs. (9) and (10), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (23)

pt = �T

4 +
1

8
T

µ
µ (24)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
, (25)

and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(26)

7

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (18)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (9) and (10) take the following forms,
✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (19)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (20)

Plugging Eqs. (19) and (20) into Eq. (18), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (21)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (22)

From Eqs. (9) and (10), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (23)

pt = �T

4 +
1

8
T

µ
µ (24)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
, (25)

and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(26)

7

By using the Maxwell relations such as (@S/@V )T = (@pr/@T )V , the above equation is

written as

⇢ = T

✓
@pr

@T

◆

V

� pr. (18)

From the fact that the trace anomaly is independent of temperature as @TT
µ
µ = 0 [38],

Eqs. (9) and (10) take the following forms,
✓
@⇢

@T

◆

V

=

✓
@pr

@T

◆

V

+ 2

✓
@pt

@T

◆

V

, (19)

and ✓
@pr

@T

◆

V

=

✓
@pt

@T

◆

V

. (20)

Plugging Eqs. (19) and (20) into Eq. (18), we obtain

T

✓
@⇢

@T

◆

V

� 4⇢ =
3

2
T

µ
µ , (21)

and then the equation is easily solved as

⇢ = 3�T 4 � 3

8
T

µ
µ (22)

From Eqs. (9) and (10), the radial and tangential pressure are also determined as

pr = �T

4 +
3

8
T

µ
µ (23)

pt = �T

4 +
1

8
T

µ
µ (24)

respectively. The Stefan-Boltzmann constant � comes from the integration constant which

is fixed as � = ⇡

2
/90 for a conformal scalar field [6]. For the traceless limit at the spa-

tial infinity, the usual Stefan-Boltzmann law should be reproduced. Thus the positivity of

the proportional constant is maintained and the proper energy density in Eq. (22) is not

necessarily positive definite thanks to the trace anomaly.

From Eqs. (22), (23), and (24), the proper temperature is obtained as

T =


1

�

✓
pr �

3

8
T

µ
µ

◆�1/4
=


1

�

✓
pt �

1

8
T

µ
µ

◆�1/4
=


1

3�

✓
⇢+

3

8
T

µ
µ

◆�1/4
, (25)

and it is compactly written in terms of the trace anomaly as

T =
1

�

1/4
p
f

✓
C0 �

3

8
f

2
T

µ
µ +

Z r
f

4r
(�2f + 3r@rf)T

µ
µ dr

◆1/4

(26)

7



Conclusions and  Discussions

The anomaly-
induced 
Stefan-

Boltzmann law

  Stefan-Boltzmann law should be modified with the trace of 
the energy-momentum tensor. So, when we calculate the 
temperature, we should use this modified Stefan-Boltzmann 
law. 
ex) Hawking radiation, Cosmology etc… 

The anomaly-
induced  
Tolman 

temperature

 Thanks to this formula, the temperature vanishes when the 
observer arrives at the horizon. Therefore, there does not exist 
firewall-like object in the thermal equilibrium of the blackhole 
system, and the equivalence principle is recovered at the 
horizon.  
In addition, ‘the general formalism of the trace-anomaly induced 
Tolman T’ for 2D black hole is in  [Eur.Phys.J.C 75 (2015) 549]. 

which can be factorized as

T =
1

8⇡M
p
f(r)

"✓
1� 2M

r

◆2
 
1 + 2

✓
2M

r

◆
+ 3

✓
2M

r

◆2

+4

✓
2M

r

◆3

+ 5

✓
2M

r

◆4

+ 6

✓
2M

r

◆5

� 21

✓
2M

r

◆6
!#1/4

. (28)

Note that the Tolman factor is remarkably canceled out so that the proper temperature is

consequently written as

T =
1

8⇡M

"✓
1� 2M

r

◆ 6X

n=1

n(n+ 1)

2

✓
2M

r

◆n�1
#1/4

(29)

In this respect, the Tolman factor which is responsible for the infinite blue shift of Hawking
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