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Kerr-NUT-(A)dS

Kerr-(A)dS spacetime

One of the most important families of solutions to Einstein’s Λ-vacuum field equations:
Kerr-(Anti-)(de Sitter-)family

depends on 3 parameters: Λ, m, a;

two linearly independent Killing vectors;

expected to satisfy black hole uniqueness results, and to

describe the asymptotic state of large classes of evolution processes.

Aim: Characterization of Kerr-de Sitter (and related) spacetimes among spacetimes
which

(i) solve the (Λ > 0)-vacuum equations,

(ii) admit a Killing vector field (KVF), and

(iii) admit a smooth conformal compactification à la Penrose,

in terms of asymptotic data at null infinity.
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Conformally compactified spacetimes

Conformally compactified spacetimes

A spacetime (M , g) has a smooth conformal compactification at infinity [Penrose ’63, ’65]
supposing that

(i) there exists a spacetime (M̃ , g̃) and a conformal embedding φ,

M
φ
↪→ M̃ , φ?(Θ−2g̃) = g , Θ ∈ C∞(M̃ ,R) , Θ|φ(M ) > 0 ,

(ii) such that null infinity I := ∂φ(M ) ∩ {Θ = 0, dΘ 6= 0} is a smooth hypersurface.

If (M̃ , g̃) solves the (Λ > 0)-vacuum equations, I is a spacelike hypersurface.

The Λ-vacuum equations are equivalent to a set of equations on (M̃ , g̃), the
conformal field equations, which remain regular at {Θ = 0} [Friedrich ’81].

Weyl tensor C̃ vanishes at I =⇒ recaled Weyl tensor Θ−1C̃ remains regular at I .

Permits construction of Λ > 0 vacuum spacetimes which admit a smooth conformal
compactification at infinity in terms of an asymptotic Cauchy problem.
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Conformally compactified spacetimes

Asymptotic Cauchy problem and asymptotic Killing initial data sets

Theorem (Friedrich, 1986)

Let (Σ, h) be a Riemannian 3-manifold and D a symmetric 2-tensor. Then if and only if

D is a TT-tensor, there exists a unique max. glob. hyp. development (M̃ , g̃) of the
conformal (Λ > 0)-vacuum field equations such that

(Σ, h) = (I−, induced metric on I−),

D = limΘ→I− Θ−1C̃(n, ·, n, ·) (n unit future normal to I−).

Theorem (P., 2014)

Let (Σ, h,D) be an asymptotic Cauchy data set for the conformal (Λ > 0)-vacuum eqns.
The emerging vacuum spacetime (M , g = Θ−2g̃) admits a KVF X if and only if

(a) (Σ, h) admits a conformal KVF (CKVF) Y ,

(b) which satisfies the KID equation

LY D +
1

3
(divhY )D = 0 .

φ?(X ) is tangential to I and its restriction to I can be identified with Y .
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Conformally compactified spacetimes

(Rescaled) Mars-Simon tensor

Definition
Let (M , g) be a Λ-vacuum space-time which admits a KVF X .

self-dual Weyl tensor Cαβµν := Cαβµν + iC?
αβµν

self-dual Killing form Fµν := ∇µXν + i(∇µXν)?, F 2 := FµνF
µν

self-dual 4-tensor Iαβµν := 1
4
(2gα[µgν]β + iεαβµν)

Mars-Simon tensor (MST): Sαβµν := Cαβµν − Q
(
FαβFµν − 1

3
F 2Iαβµν

)
, where

Q ∈ C∞(M ,C)

In (M̃ , g̃) we will deal with the rescaled MST T := Θ−1S .

Significance

The Kerr-(A)dS spacetimes admit a distinguished KVF (for m 6= 0) for which the
MST vanishes.

In [Mars & Senovilla ’15, ’16] a complete classification of Λ-vacuum spacetimes is
provided which admit a KVF whose associated MST vanishes for some function Q
(in particular, a local characterization of the Kerr-(A)dS family).

It was used to establish Kerr black hole uniqueness results without an analyticity
assumption [Ionescu & Klainerman ’09] [Alexakis, Ionescu & Klainerman ’10].
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Conformally compactified spacetimes

Strategy to obtain characterization result

(A) Characterize asymptotic KIDs (Σ, h,D,Y ) which yield a spacetime with an rescaled
MST which vanishes on I .

(B) Derive evolution equations for the rescaled MST which ensure that the MST
vanishes everywhere.

(C) Classify the emerging spacetimes in terms of (Σ, h,D,Y ).
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Conformally compactified spacetimes

Step (A)

Choice of the function Q:
Natural choice for F 2 6= 0:

SαβµνF
αβFµν = 0 ⇐⇒ Q = Q0 :=

3

2
F−4CαβµνF

αβFµν

Properties:

S = 0 =⇒ Q = Q0

S (0) vanishes at I , whence the rescaled MST T (0) is regular there.

Lemma (Mars, P., Senovilla & Simon, 2016)

Let (Σ, h,D,Y ) by asymptotic KIDs with |Y | > 0. Then T (0)|I = 0 if and only if

Cotton-York(h) = ACY |Y |−5(Y ⊗ Y )tf , D = AD |Y |−5(Y ⊗ Y )tf , (1)

where ACY ,AD = const.

Problem: T (0) does not seem to satisfy a useful evolution equation.
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Conformally compactified spacetimes

Step (B)

Alternative choice for Q:
Ernst potential σ is given, up to a complex “σ-constant”, by ∇µσ = 2XαFαµ (in
Λ-vacuum the r.h.s. is closed). Set

Qev := 3σ−1 + 4ΛF−2 − 3σ−1
√

1 + 4ΛσF−2 .

Properties:

S = 0 =⇒ Q = Qev for some σ-constant [Mars & Senovilla ’15].

T (ev) satisfies a homogeneous symmetric hyperbolic system of evolution equations
which is of Fuchsian type at I .

Generically, T (ev) will be singular at I – for any choice of the σ-constant.

Lemma (Mars, P., Senovilla & Simon, 2016)

Let (Σ, h,D,Y ) by asymptotic KIDs. If and only if

Cotton-York(h)(Y , ·) ∝ Y , D(Y , ·) ∝ Y (2)

there exists a choice of the σ-constant for which T (ev) is regular at I . In that case

T (ev)|I = T (0)|I .
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Conformally compactified spacetimes

Main result

Theorem (Mars, P., Senovilla & Simon, 2016)

Let (Σ, h,D,Y ) by asymptotic KIDs with |Y | > 0. Then there exists a Λ > 0-vacuum
spacetime (M , g) which admits a KVF X with X i |I− = Y i , such that the associated
MST vanishes, and (Σ, h) = (I−, induced metric on I−) and

D = limΘ→I− Θ−1C̃(n, ·, n, ·) if and only if (ACY ,AD = const.)

Cotton-York(h) = ACY |Y |−5(Y ⊗ Y )tf , D = AD |Y |−5(Y ⊗ Y )tf . (1)

We call spacetimes generated by asymptotic KIDs which satisfy (2) asymptotically
Kerr-de Sitter-like (note that (2) is weaker than (1)).
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Conformally compactified spacetimes

Step (C): Asymptotic characterization of KdS and related spacetimes

We make the additional assumption that I is conformally flat ⇐⇒ ACY = 0.

Only conformal class of (I , h) matters
geometrically:

Take round sphere (S3, s) as initial manifold
and classify CKVFs up to conformal
diffeomorphisms: For this, define two
functions c := c(Y ), k := k(Y ):

constant if (i) holds,

depend only on [Y ].

except for {k = 0, c < 0} there exist at
most one equivalence class of CKVF

I can be identified with S3 \ {Y = 0}.

Theorem (Mars, P. & Senovilla, 2016)

Let (Σ, h,D,Y ) by asymptotic KIDs. Then the emerging spacetime will be locally
isometric to KdS if and only if
(a) (Σ, h) is conformally flat, (b) D = AD |Y |−5(Y ⊗ Y )tf ,
(c) k(Y ) > 0 or (k(Y ) = 0 & c(Y ) > 0).
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Conformally compactified spacetimes

Thank you!
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