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Introduction
Quantum Field Theory without a Vacuum State

Standard approach to QFT:
I discrete excitations around a vacuum state
I 6= vacuum states ↔ inequivalent representations ⇒ need to

fine-tune the vacuum state to the dynamics
QFT on curved space time: no natural choice
LQG: preferred kinematical vacuum [Lewandowski, Oko lów,

Sahlmann, Thiemann; Fleischhack] but tension with the dynamics and
the semi-classical limit [see also: Koslowski & Sahlmann ’11]

An alternative way to construct the state space [Kijowski ’76, Oko lów

’09 & ’13], by gluing together elementary building blocs:
I lifting the Stone-von Neumann theorem to QFT
I yields universal quantum state spaces, independent of any

choice of polarization
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Projective Formalism for QFT
Building Blocs: Finitely many Degrees of Freedom

M

x

p a = x̂+i p̂√
2

|n〉 = a†n√
n!
|∅〉

Example: linear system

I modes = independant pairs
of canonically conjugate
variables

I polarization  Fock
representation

Relating different choices:

I finite dim ⇒ unitarily
equivalent representations
(but 6= vacuum states)

I infinite dim ⇒ in general,
not equivalent

[Uniqueness for finite dim linear: Stone, von Neumann; Geometric quantization: Woodhouse,...]
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Projective Formalism for QFT
Coarse-graining between Phase Spaces

πη′→η

Mη′

Mη

η 4 η′ ∈ L

Collection of partial theories:

I η ∈ L = a selection of d.o.f.’s

I ‘small’ phase space Mη

Coarse graining:

I projections πη′→η for η 4 η′
I lifting observables

Aη ◦ πη′→η =: Aη′

compatible with the
Poisson brackets

I preferred factorization
Mη′ ≈Mη′→η ×Mη

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Projective Formalism for QFT
Coarse-graining between Quantum State Spaces

Mη′

Mη′→η ×MηM̃η′→η ×Mη

η 4 η′ ∈ L

Quantization:

I classical factorizations
 ⊗-factorizations
Hη′ ≈ Hη′→η ⊗Hη

I unambiguous H̃η′→η ≈ Hη′→η

Projective families (ρη)η∈L :

I ρη density matrix on Hη
I ρη = TrHη′→η

ρη′ = TrH̃η′→η
ρη′

Ex: linear QFT
 polarization-independant

quantum state space
[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Projective Formalism for QFT
Natural Embedding of Arbitrary Vacuum Sectors

ρη′

partial
trace

ρη = Trη′→η ρη′

Hη′ ≈ Hη′→η ⊗Hη

Hη

η 4 η′ ∈ L

Inductive limit F∅:

I choice of vacuum
∀η 4 η′,

∣∣∅η′→η
〉
∈ Hη′→η

 injection ιη′←η : Hη → Hη′
I ex: Fock representation,

LQG state space,...

Mapping a density matrix σ on F∅
to a projective state

(
ρη
)
η
:

I this mapping is injective

I its image can be characterized

[GNS Representation: Gelfand, Naimark, Segal]
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Universal Selections of Degrees of Freedom
Restriction to a Cofinal Sequence of Labels

L

η

Sequence
(
κn
)
n>1

:

I increasing: κn 4 κn+1

I cofinal: ∀η ∈ L, ∃n
/
η 4 κn

Bijective mapping
(
ρκn
)
n
↔
(
ρη
)
η∈L:

I ρη = Trκn→ηρκn for some κn < η
I projective quantum state spaces

are robust (by contrast eg. to

infinite tensor products)
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Universal Selections of Degrees of Freedom
(Semi-classical) States on a Sequence of Labels

ρκ1 =
∣∣ζκ1

〉〈
ζκ1

∣∣

Hκ1

κ1 ∈ L

Semi-classical states on an
increasing sequence

(
κn
)
n>1

:

I first at macroscopic scale

I then, step by step, on
complementary d.o.f.’s
κn+1 → κn
 saturating uncertainty

relations, given already

chosen macro scale behavior

More generally: systematic,
recursive construction of all
projective states

(
ρκn
)
n>1

[See also: Giesel & Thiemann ’06; Oriti, Pereira & Sindoni ’12]
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Universal Selections of Degrees of Freedom
Restriction to a Quasi-Cofinal Sequence of Labels

L

Continuum of d.o.f.’s:

I abstraction for math convenience

I dense, countable sub-algebra of
observables is enough  but:
ensure universality and respect
symmetries of the theory

Quasi-cofinal increasing sequence:
∀η ∈ L, ∃n > 1

/

I T·η 4 κn (with T small deformation)

I ∀κ 4 η, κm, T·κ !
= κ

(for any m > 1)
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Universal Selections of Degrees of Freedom
Universality & Symmetries

L

K

J

Subsequences + deformations
/

I S·ηmk
4 T·κnk

I T·κnk 4 S·ηmk+1

⇒
(

S·ηm
)
m
∼
(

S·ηmk

)
k
∼(

T·κnk
)
k
∼
(

T·κn
)
n

Approximating symmetries of
the theory (eg. diffeos):

I
(
Φ·κn

)
n

=:
(
ηm
)
m

I
(

S·ηm
)
m
∼
(

T·κn
)
n

⇒
(
Φ̃·κn

)
n
∼
(
κn
)
n

(with Φ̃ := T
−1 ◦ S ◦ Φ)
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Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)

Universal Label Subsets FractalUniv Fractal2D

Universality & Symmetries 12 / 19



Universal Selections of Degrees of Freedom
Universality & Symmetries

L

K

J

κn1

ηm1

ηm2

Subsequences + deformations
/

I S·ηmk
4 T·κnk

I T·κnk 4 S·ηmk+1

⇒
(

S·ηm
)
m
∼
(

S·ηmk

)
k
∼(

T·κnk
)
k
∼
(

T·κn
)
n

Approximating symmetries of
the theory (eg. diffeos):

I
(
Φ·κn

)
n

=:
(
ηm
)
m

I
(

S·ηm
)
m
∼
(

T·κn
)
n

⇒
(
Φ̃·κn

)
n
∼
(
κn
)
n

(with Φ̃ := T
−1 ◦ S ◦ Φ)
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Application to Loop Quantum Gravity
Projective State Space for LQG

The labels:

I a graph = holonomies

I a set of surfaces dual to this
graph = conjugate fluxes

I Hη := L2 (Gn, dµHaar)

The coarse-grainings:

I Gn ≈ Gm × Gn−m

I kept holonomies
 prescribes the factor Gm

I kept fluxes 
complementary factor Gn−m

[Holonomy-flux algebra: Ashtekar, Gambini, Isham, Lewandowski, Pullin, Rovelli, Smolin,...]
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Application to Loop Quantum Gravity
Relation to the AL Hilbert Space

η′′

η

ψη(h1, h2)

ψη(h1, h2) = ψη′′ (h1, h2, . . .)

Inductive limit HAL :

I AL vacuum: ∅η′→η ≡ 1

∈ Hη′→η = L2 (Gn−m)

I injection Hη → Hη′ only
depends on the graphs

Projective state space extends
AL state space:

I holonomies and fluxes on
the same footing

I first step toward better
semi-classical states

[LQG Hilbert space: Ashtekar, Isham, Lewandowski,...]
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Application to Loop Quantum Gravity
Fractal Sequences of Labels

4 κ2

κ1

4 κ3

Fractal-like sequence of labels:

I universality (equivalent state

spaces from 6= sequences)

I background independence
(approx any diffeomorphism by

fractal-stabilizing morphism)

Viz. semi-analytic structure:

I 6= semi-analytic structures
related by small deformation

I any diffeo can be approx by
semi-analytic one

[See also: Renteln & Smolin, Gambini & Pullin, Corichi & Zapata, Loll,...]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Summary: Comparison with other State Spaces

analytic
holo. & fluxes

infinite
graph

fractal-based
sub-algebra

HAL
proj. st.

space AQG induc.
limit

proj. st.
space ITP

Hilbert space 3 7 3 3 7 3

Separability 7 “ 7 ” 7 3 “ 3 ” 7

Universality +

Action of diffeos.
3 3 7 3 3 7

Solving Gauss &

diffeo. constraints
3 7 3 3 ? 3

Non-compact G 7 ? 3 7 3 3

Untruncated

semi-cl. states
7 7 3 7 3 3

[ITP: von Neumann ’39; AQG: Giesel & Thiemann ’06,...]
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Outlook

Applications of the thus constructed state space:

I study of the semi-classical regime of loop quantum gravity

I derivation of symmetry reduced models (LQC, spherically
symmetric LQG,...) from the full theory [Engle ’07]

Implementation of the constraints:

I general prescriptions to deal with constraints in the context of
projective state spaces: in particular, relations with covariant
approaches, renormalization...

I Gauss & diffeomorphism constraints: somewhat easier when
working on fractal sequence of labels

I dynamics...

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)

Consts

18 / 19



πη′→η

Mη′ ≈Mη′→η ×Mη

Mη

η 4 η′ ∈ L

L

η, T·η
κn

K

Hη′

Hη′→η ⊗HηH̃η′→η ⊗Hη

ρη = Trη′→η ρη′

η 4 η′ ∈ L

Thank you!

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)

Extra Slides

20 / —



Classical Projective State Spaces
Projective Systems of Phase Spaces

Mη′′

Mη′

Mη

πη′′→η′

πη′′→η

πη′→η

η 4 η′ 4 η′′ ∈ L

Collection of partial theories:

I label set L, 4
I η ∈ L = a selection of d.o.f.’s

I ‘small’ phase spaces Mη

Ensuring consistency:

I projections πη′→η for η 4 η′
I mounting observables:

Oη′ = Oη ◦ πη′→η
I 3-spaces-consistency
→ projective system

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Projective State Spaces
Projections and Factorizations

π :M→ M̃
q1, ...... , qn
p1, ...... , pn;

q̃1, .. , q̃m
p̃1, .. , p̃m;
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Projective State Spaces
Projections and Factorizations

π :M→ M̃
q1, ...... , qn
p1, ...... , pn;

q̃1, .. , q̃m
p̃1, .. , p̃m;

M≈ M̃×M
˜

q1, ...... , qn
p1, ...... , pn;

q̃1, .. , q̃m, q
˜
m+1, .. , q

˜
n

p̃1, .. , p̃m, p
˜
m+1, .. , p

˜
n;
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q1, ...... , qn
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n
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˜
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6=
τ : C → C̃
q1, ...... , qn

q̃1, .. , q̃m
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Classical Projective State Spaces
Example: Second Quantization

I ′ ≈
(
I⊥ ∩ I ′

)
× I

I

e1

e2e3

I ′

I⊥ ∩ I ′

I ⊂ I ′ ⊂ Hone particule

First quantized theory:

I Hilbert space Hone particule

ωsymplect := 2 Im 〈·, ·〉
I ae : ψ 7→ 〈e, ψ〉
I {ae , a∗f } = i 〈e, f 〉

Projective system:

I labels: I ⊂ Hone particule

with dim I <∞
I ‘small’ phase space: MI := I

I πI ′→I orthog. projection on I ⊂ I ′

I ∃! factorization: I ′ ≈
(
I⊥∩ I ′

)
× I

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Quantum Projective State Spaces

Mη′′

Mη′′→η′ Mη′

Mη′′→η′ Mη′→η Mη Mη′′→η Mη

×

× × ×

η 4 η′ 4 η′′ ∈ L

Modeled on special case:

I classical factorizations
Mη′ ≈Mη′→η ×Mη

I 3-spaces-consistency
Mη′′→η ≈Mη′′→η′ ×Mη′→η

I quantization
 ⊗-factorizations

Projective families (ρη)η∈L :

I ρη density matrix on Hη
I TrHη′→η ρη′ = ρη

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Quantum Projective State Spaces
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I quantization
 ⊗-factorizations
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Projective State Spaces
Quantization

Mη 99K Hη
Mη′ ≈Mη′→η ×Mη

99K Hη′ ≈ Hη′→η⊗Hη

Holo.
repr.

Holomorphic st. on Mη

Hη = L2(Mη , dυη) ∩ Holo

∃ holomorphic st.

on Mη′→η such that

≈ is holomorphic

Position
repr.

Mη = T ∗(Cη)

Hη = L2(Cη , dµη)

Cη′ ≈ Cη′→η × Cη
µη′ ≈ µη′→η × µη

+ observables...

[Geometric quantization: Woodhouse ’92]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Quantum Projective State Spaces
Example: Second Quantization

FI ′ ≈ FI⊥∩I ′ ⊗FI

∣∣n1, n2, n3

〉
=
∣∣n3

〉
⊗
∣∣n1, n2

〉

I

e1

e2e3

I ′

I⊥ ∩ I ′

I ⊂ I ′ ⊂ Hone particule

Projective system for the second
quantization of Hone particule:

I labels: I ⊂ Hone particule

with dim I <∞
I ‘small’ Hilbert space:
FI = partial Fock space
built on I

I I ⊂ I ′ ⇒ FI ′ ≈ FI⊥∩I ′ ⊗FI

Mapping a density matrix σ on
FFock to a projective state (ρI )I :

I ∀ I , ρI = TrF
I⊥
σ

using FFock ≈ FI⊥ ⊗FI

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Inductive Limit from a Choice of Vacuum
Fock Space

Fock space FFock built on Hone particule as an inductive limit:

I ∅I ′→I =
∣∣(0)j

〉
∈ FI⊥∩I ′

I ιI ′←I :
∣∣(ni )i

〉
∈ FI 7→

∣∣(0)j , (ni )i
〉
∈ FI ′ ≈ FI⊥∩I ′ ⊗FI

Mapping a density matrix σ on FFock to a projective state (ρI )I :

I ∀ I ⊂ Hone particule, ρI = TrF
I⊥
σ

using the factorization FFock ≈ FI⊥ ⊗FI

I sup
I

inf
I ′⊃I

TrFI ′

[ (
|∅I ′→I 〉〈∅I ′→I | ⊗ 1FI

)
ρI ′
]

= 1

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Infinite Tensor Product

Infinite tensor product

⊗

f ∈Λ

Jf :=
⊕

[Ω]'

H[Ω]'

Ω ' Ω′ ⇔ ∑
f∈Λ

∣∣〈Ωf , Ω′f
〉
− 1
∣∣ <∞

Projective system:

I λ ⊂ Λ, #λ <∞
I Hλ :=

⊗
f ∈λ Jf

ITP states projective states:

I each sector separately

I cross-sector correlations are
lost

I not representable on the ITP:

ρ =
⊗
f ∈Λ

( |Ωf 〉〈Ωf |+|Ω′f 〉〈Ω′f |
2

)

[ITP: von Neumann ’39]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Implementation of Gauge Constraints and Dynamics
Nice Constraints

Mkin
∞

Mkin
η

πkin
η

Restrictive requirements:

I orbits are projected on
orbits → πdyn

η between
reduced phase spaces

I compatible with
symplect. structures

Dynamical projective
system & transport maps:

I states to projective
families of orbits

I observables

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Implementation of Gauge Constraints and Dynamics
Unfitting Constraints

kin

∞
Lt {∞}

dyn

∞

Lt {∞}

Successive approximations:

I labelled by ε ∈ E
I nice on smaller and

smaller cofinal parts of L

Projections between
approximated theories:

I dynamical projective
system on a subset of
E × L

I notion of convergence
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Implementation of Gauge Constraints and Dynamics
Toy Model: Schrödinger Equation

E − 〈ψ, Hψ〉 = 0

∞

Mkin
∞ = Hone part. × R2 =

{
(ψ; t, E)

}

Approximations:

I ε > 0 deformation →
compact orbits

I truncation on finite
dim. subspace I

Proof of principle for previous
strategy:

I classical → convergence for
normed dynamical states

I quantum → convergence for
Fock dynamical states

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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∞
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∞ = Hone part. × R2 =

{
(ψ; t, E)

}

(
E − 〈ψ, Hψ〉

)2

+ ε4 t2 = ε2

ε > 0
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Implementation of Gauge Constraints and Dynamics
Toy Model: Schrödinger Equation

E − 〈ψ, Hψ〉 = 0

∞

Mkin
∞ = Hone part. × R2 =

{
(ψ; t, E)

}

(
E − 〈ψ, HI ψ〉

)2

+ ε4 t2 = ε2

& ψ ∈ I

where HI = ΠI H ΠI

ε > 0, I ⊂ Hone part.

Approximations:

I ε > 0 deformation →
compact orbits

I truncation on finite
dim. subspace I

Proof of principle for previous
strategy:

I classical → convergence for
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I quantum → convergence for
Fock dynamical states
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ε > 0
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E
ψ
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ε > 0, I ⊂ Hone part.

t

E
ψ

t

E

ψ

Approximations:

I ε > 0 deformation →
compact orbits

I truncation on finite
dim. subspace I

Proof of principle for previous
strategy:

I classical → convergence for
normed dynamical states

I quantum → convergence for
Fock dynamical states
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Quantizing Gravity ∗

Perturbative
Formulation

I g = go + h

I perturb. QFT

Dynamical
Triangulations

I discretization

I path-integral

Geometrodynamics

I canonical GR

I canonical
quantization

non-
renormalizable

dominated by
degenerate
geometries

String
Theory

Asymptotic
Safety

Causal Dyn.
Triangl.

Spin
Foams

Loop Quant.
Gravity

∗ disclaimer: this table is not exhaustive!

[Non-renormalizability: Goroff & Sagnotti ’85]
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Quantizing Gravity ∗

Perturbative
Formulation

I g = go + h

I perturb. QFT

Dynamical
Triangulations

I discretization

I path-integral

Geometrodynamics

I canonical GR

I canonical
quantization

non-
renormalizable

dominated by
degenerate
geometries

String
Theory

Asymptotic
Safety

Causal Dyn.
Triangl.

Spin
Foams

Loop Quant.
Gravity

∗ disclaimer: this table is not exhaustive!

[Strings: Green, Polyakov, Schwarz, Witten... ’80s; Asympt. safe: Parisi, Weinberg, Wilson... ’70s]
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Quantizing Gravity ∗

Perturbative
Formulation

I g = go + h

I perturb. QFT

Dynamical
Triangulations

I discretization

I path-integral

Geometrodynamics

I canonical GR

I canonical
quantization

non-
renormalizable

dominated by
degenerate
geometries

String
Theory

Asymptotic
Safety

Causal Dyn.
Triangl.

Spin
Foams

Loop Quant.
Gravity

∗ disclaimer: this table is not exhaustive!

[(C)DT: Ambjørn, Jurkiewicz, Loll... ’90s]
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Quantizing Gravity ∗

Perturbative
Formulation

I g = go + h

I perturb. QFT

Dynamical
Triangulations

I discretization

I path-integral

Geometrodynamics

I canonical GR

I canonical
quantization

non-
renormalizable

dominated by
degenerate
geometries

String
Theory

Asymptotic
Safety

Causal Dyn.
Triangl.

Spin
Foams

Loop Quant.
Gravity

∗ disclaimer: this table is not exhaustive!

[Geometrodynamics: DeWitt, Misner, Wheeler... ’60s]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Canonical General Relativity
The ADM Formalism

Phase space of spacial slices:

I configuration variables:
3-geometry

I momentum variables:
extrinsic curvature

Gauge constraints:

I 3-slice in constraint surface
iff can be sliced out of
Einstein 4-geometry

I different 3-slices in same
gauge orbit iff can be sliced
out of the same Einstein
4-geometry

[Canonical GR: Arnowitt, Deser, Misner ’62]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Quantizing Gravity ∗

Perturbative
Formulation

I g = go + h

I perturb. QFT

Dynamical
Triangulations

I discretization

I path-integral

Geometrodynamics

I canonical GR

I canonical
quantization

non-
renormalizable

dominated by
degenerate
geometries

String
Theory

Asymptotic
Safety

Causal Dyn.
Triangl.

Spin
Foams

Loop Quant.
Gravity

∗ disclaimer: this table is not exhaustive!

[Geometrodynamics: DeWitt, Misner, Wheeler... ’60s]
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Quantizing Gravity ∗

Perturbative
Formulation

I g = go + h

I perturb. QFT

Dynamical
Triangulations

I discretization

I path-integral

Geometrodynamics

I canonical GR

I canonical
quantization

non-
renormalizable

dominated by
degenerate
geometries

hard to explicitly
implement

String
Theory

Asymptotic
Safety

Causal Dyn.
Triangl.

Spin
Foams

Loop Quant.
Gravity

∗ disclaimer: this table is not exhaustive!

[LQG/Spin foams: Ashtekar, Lewandowski, Pullin, Rovelli, Smolin, Thiemann... ’80s]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Loop Quantum Gravity
The Holonomy-Flux Variables

ES ∈ Lie∗(G )

he ∈ G

{he , ES ,i} = τi . he

ES

ES ′

{
ES ,i , ES ′,j

}
= C k

ij ES∩S ′,k

GR as a G = SU(2) gauge theory:

I Lie∗(G )-valued fluxes encode
spacial 3-geometry

I G -valued holonomies combine
intrinsic and extrinsic curvature

I Poisson algebra can be
regularized, no background
metric needed

I reduces to ADM formalism
once additional G-gauge
invariance is imposed

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Loop Quantum Gravity
The Ashtekar–Lewandowski Hilbert Space

Fock Space

AL Hilbert Space

I

e1

e2

I ′ = span {e1, e2, e3}

I = span {e1, e2}
⊂ Hone particule

e1

e2γ

γ′ = (e1, e2, e3)

γ = (e1, e2)

on the spacial slice Σ

FI = L2(R)⊗ L2(R)

FI

= span
{
|n1, n2〉

∣∣ n1, n2 ∈ N
}

Hγ

=
{
|ψγ〉

∣∣ψγ : g1, g2 7→ ψγ(g1, g2)
}

âe1 |n1, n2〉 =
√
n1 |n1 − 1, n2〉

â†e1
|n1, n2〉 =

√
n1 + 1 |n1 + 1, n2〉

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,... ’92–95]

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Loop Quantum Gravity
The Ashtekar–Lewandowski Hilbert Space

Fock Space AL Hilbert Space

I

e1

e2

I ′ = span {e1, e2, e3}

I = span {e1, e2}
⊂ Hone particule

e1

e2γ

γ′ = (e1, e2, e3)

γ = (e1, e2)

on the spacial slice Σ

FI = L2(R)⊗ L2(R)

FI

= span
{
|n1, n2〉

∣∣ n1, n2 ∈ N
} Hγ = L2(G)⊗ L2(G)

Hγ

=
{
|ψγ〉

∣∣ψγ : g1, g2 7→ ψγ(g1, g2)
}

âe1 |n1, n2〉 =
√
n1 |n1 − 1, n2〉

â†e1
|n1, n2〉 =

√
n1 + 1 |n1 + 1, n2〉

f ◦̂he1 |ψγ〉 =
∣∣f (g1)ψγ

〉
ÊS,i |ψγ〉 =

∣∣i∇[g1]
τi ψγ

〉 e1

S

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,... ’92–95]
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Loop Quantum Gravity
The Ashtekar–Lewandowski Hilbert Space

Fock Space AL Hilbert Space

I

e1

e2e3

I ′ I ′ = span {e1, e2, e3}
I = span {e1, e2}
⊂ Hone particule

e1

e2γ

γ′ = (e1, e2, e3)

γ = (e1, e2)

on the spacial slice Σ

FI = span
{
|n1, n2〉

∣∣ n1, n2 ∈ N
}

Hγ =
{
|ψγ〉

∣∣ψγ : g1, g2 7→ ψγ(g1, g2)
}

FI ⊂ FI ′

|n1, n2〉 ' |n1, n2, 0〉
FFock = lim

I⊂Hone part.

FI

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,... ’92–95]
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Loop Quantum Gravity
The Ashtekar–Lewandowski Hilbert Space

Fock Space AL Hilbert Space

I

e1

e2e3

I ′ I ′ = span {e1, e2, e3}
I = span {e1, e2}
⊂ Hone particule

e1

e2γ

e3

γ′ γ′ = (e1, e2, e3)

γ = (e1, e2)

on the spacial slice Σ

FI = span
{
|n1, n2〉

∣∣ n1, n2 ∈ N
}

Hγ =
{
|ψγ〉

∣∣ψγ : g1, g2 7→ ψγ(g1, g2)
}

FI ⊂ FI ′

|n1, n2〉 ' |n1, n2, 0〉
FFock = lim

I⊂Hone part.

FI

Hγ ⊂ Hγ′
|ψγ〉 '

∣∣ψγ′ : g1, g2, g3 7→ ψγ(g1, g2)
〉

HAL = lim
γ on Σ

Hγ

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,... ’92–95]
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Projective State Space for LQG
The Label Set

The label set:

I a graph = a choice of holonomies

I a set of surfaces dual to this
graph = a choice of conjugate
fluxes

I the label set must be directed
⇒ allow intersecting surfaces

I each label = a {·, ·}-subalgebra
⇒ need edges probing any
intersection

[See also: Oko lów ’13 (Abelian case)]
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Holonomy-Flux Algebra
Directedness of the Label Set (∀η, η′ ∈ L, ∃ η′′ < η, η′)

1
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Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)

Extra Slides ALLabels

Holonomy-Flux Algebra 36 / —



Holonomy-Flux Algebra
Directedness of the Label Set (∀η, η′ ∈ L, ∃ η′′ < η, η′)

1 2 3

4 5
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Universal Sequences: A 1-dimensional Model
Selection of an Increasing Sequence

η1

η2

η3

4
4

..
.

Simplified version of holonomy-flux
algebra:

I one-dimensional

I one-sided fluxes, acting only on
the left

Selecting an increasing
(
ηk
)
k∈N :

I ηk =
{
e /̀2k , S /̀2k

∣∣ 1 6 ` 6 2k
}

I k 6 k ′ ⇒ ηk 4 ηk ′

[See also: combinatorial LQG: Zapata ’97; discrete quantum gravity: Gambini & Pullin;...]
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Universal Sequences: A 1-dimensional Model
Universality and Approximation of Diffeomorphisms

One can formulate generic
properties that

(
ηk
)
k

should
satisfy.

All sequences with these
properties are equivalent:

I deformation mapping
eg.
{
n/3m

}
to
{
/̀2k
}

,
arbitrarily close to identity

I ⇒ identification of the
corresponding state spaces

I similarly: approximating
diffeomorphisms

[ 6= universality at diffeo.-inv. level: Baez & Sawin ’95, Zapata ’97,...]
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Obstruction to Finite Variances in the G = R Case
Selecting a Set of Observables with Uniformly Bounded Variances

......

p

Sp

ep

e

G = R

Looking for a state such that:

I ∀e, ∆h2
e <∞

I ∀S , ∆E2
S <∞

{
p ∈ e

}
uncountable:

I ∃A
/

{
p
∣∣∆h2

ep 6 A
}

uncountable

I ∃A, B
/

{
p
∣∣∆h2

ep 6 A, ∆E2
Sp 6 B

}

uncountable
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Obstruction to Finite Variances in the G = R Case
Bound from Heisenberg Uncertainty Relations

......

S1

e1

S2

e2

SN

eN

e

∆h2
ek
6 A, ∆E2

Sk
6 B

One can construct a quadratic
operator QN from:

I he1 , . . . , heN

I ES1 , . . . , ESN

such that
〈
QN

〉
6 A + B

But Heisenberg inequalities
⇒ lower bound on

〈
QN

〉
that

diverges with N!

[See also: Varadarajan; Lewandowski, Oko lów, Sahlmann, Thiemann; Fleischhack;...]
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Introduction
Quantum Field Theory without a Vacuum State

Standard approach to QFT:
I discrete excitations around a vacuum state
I 6= vacuum states ↔ inequivalent representations ⇒ need to

fine-tune the vacuum state to the dynamics
QFT on curved space time: no natural choice
LQG: preferred kinematical vacuum [Lewandowski, Oko lów,

Sahlmann, Thiemann; Fleischhack] but tension with the dynamics and
the semi-classical limit [see also: Koslowski & Sahlmann ’11]

An alternative way to construct the state space [Kijowski ’76, Oko lów

’09 & ’13], by gluing together elementary building blocs:
I lifting the Stone-von Neumann theorem to QFT
I yields universal quantum state spaces, independent of any

choice of polarization

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Projective Formalism for QFT
Coarse-graining between Phase Spaces

πη′→η

Mη′ ≈Mη′→η ×Mη

Mη

η 4 η′ ∈ L

Collection of partial theories:

I η ∈ L = a selection of d.o.f.’s

I ‘small’ phase space Mη

Coarse graining:

I projections πη′→η for η 4 η′
I lifting observables

Aη ◦ πη′→η =: Aη′

compatible with the
Poisson brackets

I preferred factorization
Mη′ ≈Mη′→η ×Mη

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Projective Formalism for QFT
Natural Embedding of Arbitrary Vacuum Sectors

ρη′

partial
trace

ρη = Trη′→η ρη′

Hη′ ≈ Hη′→η ⊗Hη

Hη

η 4 η′ ∈ L

Inductive limit F∅:

I choice of vacuum
∀η 4 η′,

∣∣∅η′→η
〉
∈ Hη′→η

 injection ιη′←η : Hη → Hη′
I ex: Fock representation,

LQG state space,...

Mapping a density matrix σ on F∅
to a projective state

(
ρη
)
η
:

I this mapping is injective

I its image can be characterized

[GNS Representation: Gelfand, Naimark, Segal]
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Universal Selections of Degrees of Freedom
Restriction to a Cofinal Sequence of Labels

L

η

K

κ

Tr

Sequence
(
κn
)
n>1

:

I increasing: κn 4 κn+1

I cofinal: ∀η ∈ L, ∃n
/
η 4 κn

Bijective mapping
(
ρκn
)
n
↔
(
ρη
)
η∈L:

I ρη = Trκn→ηρκn for some κn < η
I projective quantum state spaces

are robust (by contrast eg. to

infinite tensor products)

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Universal Selections of Degrees of Freedom
Restriction to a Quasi-Cofinal Sequence of Labels

L

η, T·η
κn

K

Continuum of d.o.f.’s:

I abstraction for math convenience

I dense, countable sub-algebra of
observables is enough  but:
ensure universality and respect
symmetries of the theory

Quasi-cofinal increasing sequence:
∀η ∈ L, ∃n > 1

/

I T·η 4 κn (with T small deformation)

I ∀κ 4 η, κm, T·κ !
= κ

(for any m > 1)

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Universal Selections of Degrees of Freedom
Universality & Symmetries

L

K

J

κn1

κn2

κn3

κn4

κn5

ηm1

ηm2

ηm3

ηm4

ηm5

ηm6

Subsequences + deformations
/

I S·ηmk
4 T·κnk

I T·κnk 4 S·ηmk+1

⇒
(

S·ηm
)
m
∼
(

S·ηmk

)
k
∼(

T·κnk
)
k
∼
(

T·κn
)
n

Approximating symmetries of
the theory (eg. diffeos):

I
(
Φ·κn

)
n

=:
(
ηm
)
m

I
(

S·ηm
)
m
∼
(

T·κn
)
n

⇒
(
Φ̃·κn

)
n
∼
(
κn
)
n

(with Φ̃ := T
−1 ◦ S ◦ Φ)

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Application to Loop Quantum Gravity
Projective State Space for LQG

The labels:

I a graph = holonomies

I a set of surfaces dual to this
graph = conjugate fluxes

I Hη := L2 (Gn, dµHaar)

The coarse-grainings:

I Gn ≈ Gm × Gn−m

I kept holonomies
 prescribes the factor Gm

I kept fluxes 
complementary factor Gn−m

[Holonomy-flux algebra: Ashtekar, Gambini, Isham, Lewandowski, Pullin, Rovelli, Smolin,...]
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Application to Loop Quantum Gravity
Fractal Sequences of Labels

4 κ2κ1

4 κ3

Fractal-like sequence of labels:

I universality (equivalent state

spaces from 6= sequences)

I background independence
(approx any diffeomorphism by

fractal-stabilizing morphism)

Viz. semi-analytic structure:

I 6= semi-analytic structures
related by small deformation

I any diffeo can be approx by
semi-analytic one

[See also: Renteln & Smolin, Gambini & Pullin, Corichi & Zapata, Loll,...]
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Summary: Comparison with other State Spaces

analytic
holo. & fluxes

infinite
graph

fractal-based
sub-algebra

HAL
proj. st.

space AQG induc.
limit

proj. st.
space ITP

Hilbert space 3 7 3 3 7 3

Separability 7 “ 7 ” 7 3 “ 3 ” 7

Universality +

Action of diffeos.
3 3 7 3 3 7

Solving Gauss &

diffeo. constraints
3 7 3 3 ? 3

Non-compact G 7 ? 3 7 3 3

Untruncated

semi-cl. states
7 7 3 7 3 3

[ITP: von Neumann ’39; AQG: Giesel & Thiemann ’06,...]
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Projective State Spaces
Projections and Factorizations

π :M→ M̃
q1, ...... , qn
p1, ...... , pn;

q̃1, .. , q̃m
p̃1, .. , p̃m;

M≈ M̃×M
˜

q1, ...... , qn
p1, ...... , pn;

q̃1, .. , q̃m, q
˜
m+1, .. , q

˜
n

p̃1, .. , p̃m, p
˜
m+1, .. , p

˜
n;

C ≈ C̃ × C
˜

q1, ...... , qn

q̃1, .. , q̃m, q
˜
m+1, .. , q

˜
n

6=
τ : C → C̃
q1, ...... , qn

q̃1, .. , q̃m
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Quantum Projective State Spaces
Example: Second Quantization

FI ′ ≈ FI⊥∩I ′ ⊗FI

∣∣n1, n2, n3

〉
=
∣∣n3

〉
⊗
∣∣n1, n2

〉

I

e1

e2e3

I ′

I⊥ ∩ I ′

I ⊂ I ′ ⊂ Hone particule

Projective system for the second
quantization of Hone particule:

I labels: I ⊂ Hone particule

with dim I <∞
I ‘small’ Hilbert space:
FI = partial Fock space
built on I

I I ⊂ I ′ ⇒ FI ′ ≈ FI⊥∩I ′ ⊗FI

Mapping a density matrix σ on
FFock to a projective state (ρI )I :

I ∀ I , ρI = TrF
I⊥
σ

using FFock ≈ FI⊥ ⊗FI

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Implementation of Gauge Constraints and Dynamics
Nice Constraints

Mkin
∞

Mkin
η

πkin
η

Mdyn
∞

Mdyn
η

Restrictive requirements:

I orbits are projected on
orbits → πdyn

η between
reduced phase spaces

I compatible with
symplect. structures

Dynamical projective
system & transport maps:

I states to projective
families of orbits

I observables

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)
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Implementation of Gauge Constraints and Dynamics
Unfitting Constraints

kin

∞ ∞ ∞
Lt {∞}

dyn

∞ ∞ ∞

Lt {∞}

E t {∞}

Successive approximations:

I labelled by ε ∈ E
I nice on smaller and

smaller cofinal parts of L

Projections between
approximated theories:

I dynamical projective
system on a subset of
E × L

I notion of convergence
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Implementation of Gauge Constraints and Dynamics
Toy Model: Schrödinger Equation

∞

Mkin
∞ = Hone part. × R2 =

{
(ψ; t, E)

}

ε > 0

t

E
ψ

t

E

ψ

Approximations:

I ε > 0 deformation →
compact orbits

I truncation on finite
dim. subspace I

Proof of principle for previous
strategy:

I classical → convergence for
normed dynamical states

I quantum → convergence for
Fock dynamical states
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Loop Quantum Gravity
The Holonomy-Flux Variables

ES ∈ Lie∗(G )

he ∈ G

{he , ES ,i} = τi . he

ES

ES ′

{
ES ,i , ES ′,j

}
= C k

ij ES∩S ′,k

GR as a G = SU(2) gauge theory:

I Lie∗(G )-valued fluxes encode
spacial 3-geometry

I G -valued holonomies combine
intrinsic and extrinsic curvature

I Poisson algebra can be
regularized, no background
metric needed

I reduces to ADM formalism
once additional G-gauge
invariance is imposed

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]
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Holonomy-Flux Algebra
Directedness of the Label Set (∀η, η′ ∈ L, ∃ η′′ < η, η′)

1 2 3

4 5

Projective State Spaces for QG (S. Lanéry) arXiv: 1604.05629 & 1411.3592 (with T. Thiemann)

Extra Slides ALLabels

Holonomy-Flux Algebra 36 / —
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