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what is Quantum gravity Phenomenology?

After several decades of efforts we have nowadays several workable 
quantum gravity theories and various scenarios for how the continuous 

and semi-classical limit are reached within them 

I.e. we have for the first time a chance to ask the hard questions about 
how and what we can probe of the fabric of spacetime. 

Missing a definitive scenario for the continuum limit of QG, we can try 
to categorise what can go wrong in our certainties…

Let’s see where this goes…

Old “dogma”: you shall not access any 
quantum gravity effect as this would require 

experiments at the Planck scale!

This has changed in the last two decades, as several 
proposal for mesoscopic QG effects have been proposed.



QG phenomenology a la carte

Broken or deformed Symmetries 
• Lorentz 
• Translations 
• SUSY (still missing obs. evidence so far) 
• Diffeomorphism (e.g. strong bounds from pulsar timing 

Donoghue et al. PhysRevD.81.084059. See also Bluhm talk)

Dimensions 
• Extra dimensions (still missing obs. 

evidence so far) 
• Dimensional reduction in QG (early 

universe?)

Locality 
• QG induced non-locality 
• Uncertainty Principle->GUP (no strong 

constraints) 
• Non-commutative geometries

QG Modified 
gravitational dynamics 

• E.g. Bouncing Universes 
• Regular Black holes.

ex pluribus quattuor



QG phenomenology a la carte

Broken or deformed Symmetries 
• Lorentz 
• Translations 
• SUSY (still missing obs. evidence so far) 
• Diffeomorphism (e.g. strong bounds from pulsar timing 

Donoghue et al. PhysRevD.81.084059. See also Bluhm talk)

Dimensions 
• Extra dimensions (still missing obs. 

evidence so far) 
• Dimensional reduction in QG (early 

universe?)

Locality 
• QG induced non-locality 
• Uncertainty Principle->GUP (no strong 

constraints) 
• Non-commutative geometries

QG Modified 
gravitational dynamics 

• E.g. Bouncing Universes 
• Regular Black holes.

ex pluribus quattuor



Dynamical frameworks for LIV

Frameworks for preferred frame effects

E.g. QED, rot. Inv. dim 3,4 operators
E.g. QED, rot. inv.dim 5 operators

(Colladay-Kosteleky 1998, Colemann-Glashow 1998) (Myers-Pospelov 2003)

EFT+LV
Non EFT proposals:  

Spacetime foam models 
DSR/Relative Locality

SME: local EFT with LIV 
Non-renormalizable ops,  

CPT ever or odd 
(no anisotropic scaling),  

(UV LIV – QG inspired LIV)
Minimal Standard Model Extension 

Renormalizable ops.  
(IR LIV - LI SSB)

See e.g. Amelino-Camelia. Living Reviews of Relativity 

See e.g. SL. CQG Topic Review (2013) 

NOTE: CPT violation implies Lorentz violation but LV does not 
imply CPT violation in local EFT.  

“Anti-CPT” theorem (Greenberg 2002 ).  
So one can catalogue LIV by behaviour under CPT



EFT with Lorentz breaking Ops. 
Matter Sector Constraints

SL, CQG Topic Review 2013

Warning 
GZK ISSUE! 

p+γCMB -> p+π0 

p+γCMB -> n+π+

 Penning traps 
 Clock comparison experiments 

 Cavity experiments 
 Spin polarised torsion balance  

 Neutral mesons  
 Slow atoms recoils

Terrestrial tests: Astrophysical tests: 

 Cosmological variation of  couplings, CMB  
 Cumulative effects in astrophysics 

 Anomalous threshold reactions   
 Shift of  standard thresholds reactions with new 

threshold phenomenology  
 LV induced decays not characterised by a threshold 

 Reactions affected by “speeds limits”
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Furthermore puzzling cut off above 2 PeV in UHE neutrinos at IceCube maybe consistent with p4 LIV at MLIV~1015 
GeV. F.W. Stecker, S.T. Scully, SL, D. Mattingly. JCAP 2015



LIV constraints with Gravitational Waves
• GW speed vs Light or Neutrino speed measurement 

(e.g. supernova, GRB, neutron binaries merging) 
could provide crucial test for low energy LIV. 

Presently we know from binary pulsars Δc/c<1%  

• to avoid gravy-cherenkov for UHECR one has the 
conservative bound (clight-cgrav)/clight<10-15 

• Together with time of arrival of GW150914 
at the two LIGO detectors one then gets 

0≲(cgrav-clight)/clight≲0.7. 

• E.g. if faint GRB detection almost simultaneous 
and co-local to GW150914 would be robust then 

(cgrav-clight)/clight<10-17 (Ellis et al. arXiv:1602.04764). 

• Future Tests: polarisation constraints extra DOF in 
GW (e.g.Spin 0,1 modes in LIV gravity), test nature of 

Horizon via ringdown or event horizon telescope

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-3

This is the dawn of a new channel also for QG phenomenology!

http://arxiv.org/abs/arXiv:1602.04764


Breakdown of translations in discrete QG: 
The CAUSET case study

Models with Lorentz invariance violation and testsModels with translation invariance violation and tests

Causal sets
Swerves

(Philpott, Dowker, Sorkin 0810.5591)

“Spacetime Plinko”

1. Treat massive particles as point particles
2. Particle can only hop from point to point on a causal set
3. Lorentz-invariant momentum space diffusion of  initial distribution 𝜌:

The problem: cold stuff  gets hot.
(Kaloper, DM astro-ph/0607485) 

Relic neutrinos go relativistic quickly, violating
bounds on hot dark matter.

𝑘 < 10−61𝐺𝑒𝑉3

Similar cosmological limits for photons

Dowker, Henson, Sorkin gr-qc/0311055

Causal sets need two scales – conclusion also reached by Benincasa, Dowker 1001.2725.

What is QG pheno

Two questions

Is gravity quantized?

𝛼, 𝛽, 𝛾 argument

The pane of  inflation

Categorization

Lorentz violation

Lorentz deformation

Translation violation

Non-locality

Dimension

Summary

 1. Treat massive particles as point 
particles  

 2. Particle can only hop from point to 
point on a causal set.  

SPACETIME PACHINKO!

The problem with this diffusion in momentum space is basically that cold 
stuff becomes rapidly hot. Even assuming this applies only to elementary 

particles you get strong bounds from cosmology.

N.Kaloper and D.Mattingly, Phys. Rev. D 74, 106001 (2006). 
STRONG BOUNDS FROM RELIC NEUTRINOS NOT VIOLATING BOUNDS ON HOT DM.  

Similar bounds also for photons w.r.t. CMB (Philipot, Dowker, Sorkin, Phys. Rev. D 79, 124047 (2009).)
k < 10�61GeV3

F. Dowker, J. Henson and R. D. Sorkin, 
  Quantum gravity phenomenology, Lorentz 
invariance and discreteness, 
  Mod. Phys. Lett. A 19, 1829 (2004).

 1. If discreteness scale is Planck then you need anomalous 
suppression of diffusion 

 2. or Particles are not point-like but they feel an “averaged spacetime” 
 3. or CAUSET and discrete models must be endowed with an extra, 

mesoscopic, scale other than the discreteness one

See also similar ideas by S. Hossenfelder,  
Phys.Rev. D88 (2013) no.12, 124031  
Phys.Rev. D88 (2013) no.12, 124030 

Hence

Remarkably, points 2) and 3) lead in CAUSET to non-local EFT scenarios…

You then get Lorentz-invariant momentum space diffusion of initial distribution 𝜌 



Non-local D’Alambertians
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Let us focus on free particles non-locality



Non-local D’Alambertians

A typical signature of non-analytic non-local propagators are violations of the Huygen 
principle (e.g. CAUSET): The propagator of massless particles can have support inside the 

light cone in 3+1

Opportunity for Phenomenology?
R.	H.	Jonsson,	E.	Martin-Martinez,	and	A.	Kempf,	Phys.Rev.Lett.	114,	110505	(2015). Ana	Blasco,	Luis	J.	Garay,	Mercedes	Martin-Benito,	Eduardo	Martin-Martinez.	Phys.Rev.Lett.	114	(2015)	14,	141103	
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Possibly very relevant for  
relativistic quantum information tests as detectors can influence 

each other at timelike separations
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FIG. 1. Di↵erent causal relationships between Alice and
Bob’s detectors switching periods. These cases are explicitly
specified in Table I. Recall that ⌘i⌫ ⌘ ⌘(Ti⌫), ⌘f⌫ ⌘ ⌘(Tf⌫).

z1 =
min (⌘fA +R, ⌘fB)

R
, z2 =

max (⌘iA +R, ⌘iB)

R
.

(11)

For simplicity, in Eqs. (7)-(8) we have already par-
ticularized the study to the case of zero-gap detectors,
⌦⌫ = 0. This choice is arbitrary and has no e↵ect on
our main results. Moreover, it is not uncommon to find
relevant atomic transitions between degenerate (or quasi-
degenerate) atomic energy levels, for example, atomic
electron spin-flip transitions.

Channel capacity.— Let us now compute the capac-
ity of a communication channel between an early Uni-
verse observer, Alice, and a late-time observer, Bob. To
obtain a lower bound to the capacity, we use a simple
communication protocol: Alice encodes “1” by coupling
her detector A to the field, and “0” by not coupling it.
Later, Bob switches on his detector B and measures its
state. If B is excited, Bob interprets a “1”, and a “0”
otherwise. The capacity of this binary asymmetric chan-
nel (i.e., the number of bits per use of the channel that
Alice transmits to Bob with this protocol) was proven to
be non-zero [5], no matter the level of noise, and it is

TABLE I. Cases of causal relationships. See Fig. 1.

Case Conditions
1 ⌘fB  ⌘iA +R

2 ⌘iB < ⌘iA +R < ⌘fB  ⌘fA +R

3 ⌘iB � ⌘iA +R, ⌘fB  ⌘fA +R

4 ⌘fB > ⌘fA +R > ⌘iB � ⌘iA +R

5 ⌘iB � ⌘fA +R

6 ⌘iB < ⌘iA +R, ⌘fB > ⌘fA +R
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FIG. 2. Channel capacity (in bits) and its �-term as func-
tions of (a) the spatial separation between Alice and Bob, for
TfA � TiA = TfB � TiB = �, TiA = �/30, and TiB = 10�,
(b) the temporal separation between Alice and Bob. In (b),
we vary TiB while keeping TfA � TiA = TfB � TiB = �
constant and we fix TiA = �/30 and R = �/10. Di↵erent
regions are labelled according to the case numbers of Fig. 1
and Table I. Since both detectors remain switched on during
the same amount of proper time, only cases 1 to 5 occur. The
violation of strong Huygens can be seen in region 5 (timelike
separation).

given, at leading order, by
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Figures 2a and 2b show the behavior of the channel ca-
pacity C. For comparison, we also display the channel
capacity in the conformally coupled case, C�. We have
selected initial detector states that, in our case, maxi-
mize the channel capacity (i.e. |↵A| = |�A| = 1/

p
2,

arg(↵A)� arg(�A) = ⇡, arg(↵B)� arg(�B) = ⇡/2).
Let us first analyze how the ability of Alice to signal

Bob depends on their time separation. From the �-term
of Eq. (6) we see that the information transmitted by
‘rays of light’ decays with the distance between A and B,
becoming negligible for long times. This yields the unsur-

⇢ = 1/`4nl

A.Belenchia, D.M.T.Benincasa and S.Liberati,
  JHEP 1503, 036 (2015)

⇤ ! f(⇤)
Generic	expectation	if	you	want	to	introduce	length	or	energy	scale	in	flat	spacetime		

KG	equation	without	giving	up	Lorentz	invariance.

Let us focus on free particles non-locality



Testing non-local EFT with 
optomechanical oscillators

Double Wheel Oscillator - DWO

New version of DWO with torsional joints in the central part that it is
used in the experiment.

1 - Front view of DWO (SEM image) with the central coating 2 - Back view DWO (SEM image) with the insulation
wheel

(INFN Gruppo Collegato Trento) HUMOR 05-07-2012 17 / 29

Heisenberg Uncertainty Measured with Opto-
mechanical Resonators (LENS - Florence, Italy)

HUMOR actually find a length scale to which compare the non-locality one. Indeed
we would like to have

✏ =
l2
nl

�
,

where � is some length scale. One could think about the linear size of the
system or even the DeBroglie wavelength. However there is actually another
scale in the system that is the frequency of the oscillator. One could then
construct

m!

~ ⌘ 1

�
,

that moreover is the variance of the ground state of the oscillator. Then one
could identify

✏ =
m!

~⇤2

as the small dimensionless parameter in which doing the expansion.
NOTE:One could be tempted to do an expansion and a similar analysis

also in the free case, i.e. without a potential. In that case I don’t know what
paremeter could be identify for an expansion. This maybe is good, since in
that case we know that an expansion, with the corresponding truncation of
the operator will only introduce spurious corrections given the fact that a
solution of the local equation is solution also of the non-local one.

2.0.1 Some numbers

~ ⇡ 10�34Kgm2

s
Suppose

m = 1µg = 10�9Kg

and
! ⇡ 5 · 104Hz.

Then our parameter will be

✏ ⇡ 5 · 1029l2
nl

that means
✏⌧ 1, l

nl

⌧
p

2 · 10�14m

This is clearly reasonable since it means that the expansion is justified for a
non-locality scale below the fermi4.

4That however is the raw extimate of the causal set non-locality by Rafael. Note that
here we are not taking into account that model.

5

Designed to test generalised uncertainty principle 
Macroscopic harmonic oscillator. 

m~10-11 / 10-5 Kg    ω~10+5 / 10+3 Hz

A. Belenchia, D. Benincasa, SL, F. Marin, F. Marino, A. Ortolan. 
Phys.Rev.Lett. 116 (2016) no.16, 161303 

in the local limit (assuming a1 = 1).
In the SFT inspired case we explicitly have the non-local Schroedinger

operator
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1.1 Quantum harmonic oscillator

We are interested1 in studying the following equation

(S
NL

� V ) �(t, x) = 0. (6)

Given the di�culty of resolving such an equation exactly we could try a
perturbative approach. In particular I will consider the following ansaz for
the ground state wave function

� = �0 + ✏�1, (7)

where �0 is the ground state for the local case and �1 is a perturbatively
small correction correction to it. Here the parameter that I am considering
as small2 is ✏ = 1

⇤2 . Given now the form of the non-local operator our
equation at the order ✏ gives

(S � V )�1 = �D�0| {z }
J (t,x)

, (8)

whereD =
P1

n=1 a
n

Sn+1. Now we have to solve the local Schodinger equation
for an harmonic oscillator with a source term dependent on the non-local
operator, the local ground state, space and time. For solving this we should
be able to use the Green function method, i.e.

�1(t, x) =

Z 1

�1
dx0

Z
t

�1
dt0

1

~K(x, t; x0, t0)J (x0, t0), (9)

where I am using the notation that can be found on Wikipedia for the Green
function of the quantum harmonic oscillator. Note the causal aspect of the

1In the following I will perform the calculations in 2D.
2Actually this is a dimensional parameter. Is it ok to use it as small parameter in the

perturbative expansion? Note that this is the non-locality scale that we were assuming
playing the game of the small parameter last time.
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E.g. let’s consider its non-relativistic limit of a non-local KG with analytic f( ). 
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So we get

Where can be test this?

In order to solve the non-local Schroedinger, one needs to adopt a 
perturbative expansion around a “local” Sch. solution

With ϵ the small 
dimensionless 

parameter for this 
problem.
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And at the lowest order we can solve
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logical constraints.

In what follows we shall describe a novel, promising
way to test non-local dynamics of this type. Restricting
ones attention to nonlocal e↵ective field theories which
are both classically and quantum mechanically stable
and, crucially, that can be derived from an underlying
quantum gravity theory, e↵ectively singles out nonlocal
dynamics defined by an analytic f . This does not im-
ply that non-analytic fs are not interesting (in fact this
case naturally arises in the context of causal set theory
[13, 16]), but rather that further investigations in the sta-
bility and unitarity of these theories are needed before
much e↵ort is invested in extending an analysis similar
to the one described below to such cases. A significant
consequnce of considering analytic fs is that it will allow
us to solve the dynamics perturbatively.

We will perform a perturbative study of the e↵ects of
modified equations of motion on the evolution of opto-
mechanical quantum oscillators based on the following
methodological steps. In order to compare our analy-
sis to actual experiments on the aforementioned systems,
we must first derive the non-relativistic limit of an e↵ec-
tive nonlocal massive scalar field theory with dynamics
given by an analytic f , showing that the evolution of
a quantum system is governed by a modified (nonlocal)
Schrödinger equation. This approach allows us to over-
come long standing issues about how to relate the evolu-
tion of macroscopic objects to the e↵ects of nonlocality
arising from a potential discreteness of spacetime. We
proceed by performing a perturbative expansion around
the local regime adapted to the specific experimental set-
ting we are interested in. We then solve for the evolution
of the wave function and compute the behaviour of the
relevant physical observables. We show that a character-
istic signature due to a periodic squeezing is introduced
by the first nonlocal correction. Using this feature we dis-
cuss the constraints already available and provide fore-
casts for those deducible from future experiments. In par-
ticular, we establish that sensitivity close to the Planck
scale can be achieved, thus severely constraining, or even
ruling out, models of QG in which the nonlocality scale
is larger than the Planck scale.

Framework.— For the non-relativistic limit of an equa-
tion of the form f(⇤+m2)� = 0 to be physically mean-
ingful and have the usual probabilistic interpretation of
the wave function, we require that: a) f(�k2+m2) = 0 i↵
k2 = m2 (this property ensures that there exist no clas-
sical runaway solutions and, when f is entire, no ghosts).
b) unitarity of the full nonlocal quantum field theory
(QFT) and c) the non-local QFT must possess a global
U(1) symmetry with a conserved charge which is positive
semi-definite in the non-relativistic limit (this condition
ensures that a probabilistic interpretation can be given).

For concreteness let us consider now the non-local La-

grangian for a free complex, massive, scalar field

L = �(x)⇤f(⇤+ µ2)�(x) + c.c., (1)

where ⇤ = c�2@2t � r2, µ = mc/~ and we assume that
f is an analytic function so that it can be formally ex-
panded as a power series f(z) =

P
1

n=1 anz
n. Implicit in

the definition of f is lk, which in the local limit lk ! 0

sends f(⇤+ µ2) ! ⇤+ µ2; in particular an / l
2(n�1)
k .

Upon making the ansatz �(x) = e�imc2

~ t (t, x) and
taking the limit c ! 1 we find

LNR =  ⇤(t, x)f(S 0) (t, x) + c.c., (2)

where NR stands for non-relativistic, S 0 = � 2m
~2 S and

S = i~ @
@t

+
~2
2m

r2, (3)

is the usual Schrödinger operator.
Depending on the precise form of the function f , the

conserved charge associated to the symmetry  ! ei↵ 
may or may not be positive semidefinite. As stated in
(c), in what follows we will assume that such a condition
is satisfied. In any case, one can show [17] that the con-
served current is given by a perturbative expansion in ✏
whose zeroth order term is the usual one.
Perturbative expansion.— We shall now consider the

case of a harmonic oscillator in 1-dimension whose evo-
lution is assumed to be described by the above non-local
Schrödinger equation with a harmonic potential. This
study is motivated both by its simplicity and ubiquity
in physics, and in view of its application to the ac-
tual experiments involving systems that are e↵ectively
1-dimensional.
Hence, we wish to solve the nonlocal equation

f(S) (t, x) = V (x) (t, x), (4)

where V is a harmonic potential V (x) = 1
2m!

2x2, m
is the mass of the system and ! its natural angular fre-
quency and, consistently with the local limit requirement,
we write

f(S) = S +
1X

n=2

bn

✓�2m

~2

◆n�1

l2n�2
k Sn, (5)

where the bn are dimensionless coe�cients.
The introduction of the potential allows one to con-

struct a dimensionless parameter ✏ ⌘ m!l2k/~ which can
be used to define the perturbative expansion. Note thatp
✏ represents the ratio between lk and the width of the

oscillator’s ground-state wavefunction xzpm =
p

~/m!
and, through ✏, the mass parameter enters the nonlocal
dynamics of the harmonic oscillator breaking the usual
! scaling. This dependence on m suggests that massive
quantum systems could be the ideal setting for detecting
such non-locality.



Spontaneous squeezing from non-locality

Let’s consider Wigner quasi probability distribution for a coherent state of our quantum harmonic oscillator,

and confront its evolution for a coherent state (easier to experimental realise 
than the ground state) in the case of   S and S+εS2

The Coherent state Wigner function 
shows a periodic almost perfect 

squeezing.

Very difficult to produce 

spontaneously…

P (x, p; t)
1

⇡

Z 1

�1
dy �(x+ y, t)⇤�(x� y, t) e2ipy

Current best bounds on the non-locality scale by comparing nonlocal relativistic EFTs to the 8 TeV LHC data lnl≤ 10−19m 

Forecast with experiment in preparation (in absence of periodic squeezing) imply lnl≤ 10−29m !

rule we shall define the probability density as

⇢(t, x) =
 ⇤(t, x) (t, x)R1

�1 | |2dx , (4.12)

such that
R1
�1 dx ⇢(x) = 1. It should be noted that, for the ground state this normalization

factor is one at order ✏, i.e. h 0| 1i = 0, while in the case of a generic coherent state an

order ✏ time dependent correction will be present. The above normalisation factor ensures

that even in this case we a have a meaningful probability distribution.

4.1 Spontaneous Squeezing of States

Given our probability distribution (4.12) we can now compute the mean and variance of

the position and momentum of the particle. We find

hxi =
p
2↵ cos(t)

✓
1 +

1

4
✏↵2a2 [cos(2t)� 1]

◆
+O(✏2), (4.13)

hpi =
p
2↵ sin(t)

✓
1 +

1

4
✏ a2

⇥
↵2(7 + 3 cos(2t))� 2

⇤◆
+O(✏2), (4.14)

Var(x) =
1

2

�
1� ✏a2

⇥�
6↵2 � 1

�
sin2(t)

⇤�
+O(✏2), (4.15)

Var(p) =
1

2

�
1 + ✏a2

⇥�
6↵2 � 1

�
sin2(t))

⇤�
+O(✏2). (4.16)

It is interesting to note that the expectation values of x and p in the ground state, i.e.

when ↵ = 0, are left unchanged from the standard local case to first order in ✏9. However,

the variance of x and p is modified to order ✏ always, except for the peculiar case where

↵ = ±1/
p
6. Given that also in this case the mean values of x and p still show corrections

of order ✏ we are led to consider this just an accident. Indeed, this is confirmed by going

to order ✏2, where the variances acquire again corrections with respect to the local result

— this time of order ✏2, consistently.

Significantly, we observe that Var(x)Var(p) = 1/4 + O(✏2), thus the perturbed state

is still a state of minimum uncertainty. It undergoes a spontaneous, cyclic, time depen-

dent squeezing in position and momenta, where the name squeezing is justified in view

of the previous observation on its minimal uncertainty. This is shown in Figure 2 AB:

dovremmo citare da qualche parte anche Fig.1....forse in sezine 5?

5 Present Constraints and Forecasts

DB: I have temporarily added the section from the PRL. I will leave the struc-

turing of this whole experimental section to the Franceschi and Antonello.

We now consider the constraints imposed by both existing opto-mechanical experi-

ments and experiments that will be performed in the near future. Let us begin by noting

9The same happens also at the next order.
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Conclusions

QG phenomenology is evolving and developing into several ramifications. A 
closer link with QG models is needed but a consistent landscape seems to be 
emerging as well as links with Relativistic Quantum Information Techniques. 

There is much more to come…

Broken or deformed Symmetries 

• SUSY- So far no evidence at LHC 
• Lorentz - Ok Matter but n=4 needs GZK, more to do 

on Gravitational sector. Good perspectives 
• Translations - Done 
• Deformed Relativity?  

We need to understand it better!

Dimensions 
• Extra dimensions - No evidence yet 
• Dimensional reduction in QG - Only early Universe 

test? We need better ideas.

Locality 

• QG induced non-locality 
Work in progress 

New link with Relativistic Quantum 
Informations techniques

Modified gravitational dynamics 

• Bouncing Universes 
• Regular Black holes. 

Work in progress. New link with BH imaging 
(EHT) and GW physics.
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The surface of the Earth is the shore of the cosmic ocean…Recently, we've waded a 
little way out, maybe ankle-deep, and the water seems inviting… (Carl Sagan)


