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Plane (Sandwich) Gravitational Waves

Goal:  To explore the relation between Lorentz symmetry and discrete spatial geometry
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• A Lorentzian spacetime with a covariantly constant null vector field

• In one choice of chart the metric is

• Plane wave in one null direction 

• One Einstein equ’n 

• Has an exact solution

• Free function     and background factor     recording the warping of space
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Algebra:  Usual (reduced) GR algebra

With additional uni-directional constraint

A first class system, with structure functions

Perhaps not too difficult to quantize... But wait, there’s more!

Plane (Sandwich) Gravitational Waves

{G[f ], G[g]} = {G[f ], H[g]} = 0, {G[f ], D[g]} = �G[f 0g],

{D[f ], D[g]} = D[fg0 � f 0g], {D[f ], H[g]} = H[fg0],
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• As a Lie Algebra - no structure functions!

Simplicity due to the dimensional reduction means we have various flavors of the algebra - 

By taking appropriate combinations of constraints we have in addition

H̄ =

r
ExEy

E H{D[f ], H̄[g]} = H̄[f 0g � fg0], {U [f ], H̄[g]} = U [f 0g],

{H̄[f ], H̄[g]} = D[f 0g � fg0]
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• As an abelian algebra (scalar constraint)

• As a Lie Algebra - no structure functions!

Simplicity due to the dimensional reduction means we have various flavors of the algebra - 

By taking appropriate combinations of constraints we have in addition

H̄ =

r
ExEy

E H{D[f ], H̄[g]} = H̄[f 0g � fg0], {U [f ], H̄[g]} = U [f 0g],

{H̄[f ], H̄[g]} = D[f 0g � fg0]

C =

p
EE 0

ExEy

(H 0 +D){C[f ], C[g]} = 0 with

Plane (Sandwich) Gravitational Waves

with

Thursday, July 14, 16



• As an abelian algebra (scalar constraint)

• As a Lie Algebra - no structure functions!

Simplicity due to the dimensional reduction means we have various flavors of the algebra - 

By taking appropriate combinations of constraints we have in addition

H̄ =

r
ExEy

E H{D[f ], H̄[g]} = H̄[f 0g � fg0], {U [f ], H̄[g]} = U [f 0g],

{H̄[f ], H̄[g]} = D[f 0g � fg0]

C =

p
EE 0
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(H 0 +D){C[f ], C[g]} = 0

• As an algebra where the Hamiltonian constraint forms an ideal

{D[f ], H̃[g]} = H̃[f 0g � fg0], {H̃[f ], H̃[g]} = 8H̃[f 0g � fg0]
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Which algebra?
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Kinematics: States based on 1D graph

Geometric quantities are simple
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an “atom of geometry”|µ, ⌫, ki
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Plane Gravitational Waves

A choice of algebra that allows us to check... 

How do we know that we have the correct quantum theory as checked via the 
classical limit?  If we quantize diffeo and hamiltonian constraints on same footing then we 
can check the algebra of constraints.

One of these versions of the algebra allows checking of the algebra, but without 
structure functions.
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A choice of algebra that allows us to check... 

How do we know that we have the correct quantum theory as checked via the 
classical limit?  If we quantize diffeo and hamiltonian constraints on same footing then we 
can check the algebra of constraints.

With triangulation adapted to the shift f can a diffeomorphism      be expressed as 

Yes. It is a shift operator

Varadarajan, Tomlin, Laddha 1105.0636,....

�

How about the Hamiltonian constraint?

parameterizes both the triangulation and diffeomorphism�
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One of these versions of the algebra allows checking of the algebra, but without 
structure functions.
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Hamiltonian constraint is apparently not so simple:  Action on an atom of 
geometry
Ĥ |~vi = �f(~v) |~vi+ ...+
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Hamiltonian constraint is apparently not so simple:  Action on a simple atom of 
geometry

The Physics is Opaque

Ĥ |~vi = �f(~v) |~vi+ ...+
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But there are better ways to motivate quantization choices:  
What we actually have is in a constraint terms of dilitation       and shear       in x,y planeP�P�
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4E + P�A+
1

4
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- quantization is already partially based on these operator products
- easier to use classical solutions:     is as before, both    and    are related to warping factor
- work is ongoing...
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Summary: “A Quantization of Plane Waves: An Update”

1. Use form of constraint algebra (                )  without structure functionsH,D,U

{D[f ], H̄[g]} = H̄[f 0g � fg0], {U [f ], H̄[g]} = U [f 0g], {H̄[f ], H̄[g]} = D[f 0g � fg0]

3. Quantize Hamilton constraint using factors that have physical interpretation, 
e.g. shear and diliatation

2. Quantize diffeo and Hamiltonian constraints on same footing
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0. Kinematics and geometric operators complete, e.g.

4. ... investigate role of discreteness and Lorentz symmetry
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