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COMPACT BINARY COALESCENCES
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 Neutron Star-Black Hole
INS-BH |;
B+ Black Hole-Black Hole
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PARAMETER ESTIMATION
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PE 1s asep on THE BAYES' THEOREM
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Why*
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PE 1s asep on THE BAYES' THEOREM
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H : model paraIne Lers 11 : noise
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PE 1s Basep on THE BAYES' THEOREM
What?
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PE 1s Basep on TiE BAYES' THEOREM
What?

d : data d = h(H) +1n  |h:signal
H : model f 11 : noise
parameters

Likelihood

Posterior Evidence

GAUSSIAN NOISE

* ZEero mean
« Known variance
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PE 1s Basep on TiE BAYES' THEOREM
What?
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Which*

FREQUENCY DOMAIN WAVEFORM

THE CHIRPING FEATURE IN FREQUENCY DOMAIN

amplitude

frequency

'he latest parts of the waveform don’t need the

same sampling &;’,f the first ones

'SAMPLING THEORY

6f < T[s]™ ]

 ~ONE POINT EVERY CYCLE.




FREQUENCY DOMAIN WAVEFORM

Frequency[Hz]

200 -150 p—lOO =50 0

SAMPLING THEORY
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~ WE CAN ADAPT THE SAMPLING FREQUENCY




FREQUENCY DOMAIN WAVEFORM

Frequency[Hz]

SAMPLING THEORY

RS < (T@)E

- WE CAN ADAPT THE SAMPLING FREQUENCY
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FREQUENCY DOMAIN WAVEFORM
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RESULTS ¢ MODEL DEPENDENCE

For one of the simplest waveform models : TAYLORF2
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RESULTS ¢ MODEL DEPENDENCE

For one of the simplest waveform models : TAYLORF2
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RESULTS ¢ MODEL DEPENDENCE

For one of the simplest waveform models : TAYLORF2
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Gain in template generation

Gain in template generation

RESULTS ¢ MODEL DEPENDENCE

For one of the simplest waveform models : TAYLORF2
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RESULTS ¢ MODEL DEPENDENCE
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RESULTS ¢ MODEL DEPENDENCE

For one of the simplest waveform models : TAYLORF2
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FREQUENCY DOMAIN WAVEFORM

EXAMPLE OF PRACTICAL RESULTS

frequency

DEFINITION OF

FREQUENCY STEP §f; =26 f,
IN BAND ¢]”




DEFINITION OF THE FREQUENCY SET

D) S G+ tyua

N, Z\LBands N
5fl — 271,15f ) G = _0 _ Zl—O {,0

| NlO — (fmaa:l fmznl)5f0

ENBands N, 0/2,”
Jf. = —
Stepl : Finding the maximum n; allowed by the fre- ‘max tpad
quency range taken into account. A

Nmaz — 1092 (5f0 tpad)

1

Step 2 : Finding the minimum necessary resolu- 0 frin =
tion. \

A

I Nmin — _1092 [5f0 (‘Ttot’ + tpad)]
O

’Ttot ’ T tpad



DEFINITION OF THE FREQUENCY SET

Step 3 : Finding the frequency limits of each band.
It is convenient to start from the highest fre-
quencies where 1n; = Nz

Step 4 : Define the frequencies at the extrema of all

the new bins (now spaced by 4 f;) contained in-
side every frequency band. From f,,.. we define

the new frequency set by fi = finaz — %0 frnaz =
fma:r — i2nm015f0 until fi > flimmax' When this
last condition is no more satisfied a new band
begins. Generalising the process, the frequen-
cies inside the [ band are fixed starting from
the last frequency defined in the [ — 1 band
and then keeping subtracting é f; = 2™ fy until
fi 2 fiim.. 1s satisfied.



STATIONARY PHASE APPROXIMATION

An alternative description can be performed in the frequency domain. [REF Cutler and
Flanagan| In this context the waveform is usually computed by adopting and developing the
Stationary Phase Approzimation (SPA). This consists in the approximation to the Fourier
transforms of the two GW polarisations. Given a function of time h(t) = A(t) cos ¢(t), its
Fourier transform :

h(f') = / h(t)e 2t dy (2.61)
can be estimated by the formula for positive frequencies f’ > 0:
~ 1 ’
N~ = ‘ / el ft(f)—o(f")—m/4)

where the time t is defined at d¢/dt = 2 f’.
variation of the angular velocity is much slower than itself, i.e. Cft(f < (@) and the time

This approximation holds whenever the

dependence of the function A(t) is led by the phase term, meaning that

dh,, dA . do y d¢
%(t) = Ecosqﬁ(t) A(t) sin ¢(t) o A(t) sin ¢(t) p (2.63)
This last condition can be formulated by the requirement dln(A) <<

At the Newtonian approximation, the amplitude A is glven by the expression (2.20), the
frequency evolution is defined by equation (2.28) and the time as function of the frequency
and the other physical parameters is given by (?7).

The time and phase as function of the be expressed as function of the gravitational frequency:

t(f) =t — 587 F)"¥/3(GM) /3¢5
(f) (87 f) (_5/3)5 (2.64)
¢(f) = ¢ — 2 [8mfGM]
These relations lead to the following estimation of ()
h(f) = Aendted) (GF0) ) = A (2.69
dr 32
where Q(angles) is a function of the angle-parameters, A(f) is the amplitude and
U(f) = 2t — bet S BrOM) - T (2.66)

The frequency domain amplitude derived under the SPA can be intuitively understood by
considering that the oscillatory terms contribute almost as ~ 1 when in phase and almost 0
otherwise. How long is the time at which this condition is satisfied is determined by the term
d%¢/dt?> ~ df'/dt. A rough approximation can thus be given by requiring d2¢/dt?At? ~ 1,
which can be used to determine the effective time duration in the Fourier transform definition:
At~ /%
More accurate waveforms in frequency domain can be reached by developing the phase 1 (f)
at higher orders of v or z.




