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Quantum	Gravity,	back	to	basics
Causal	Dynamical	Triangula%ons	(CDT)	is	an	aOempt	to	bring	back	
quantum	gravity	into	the	fold	of	ordinary	quantum	field	theory,	
without	appealing	to	some	grand	unified	dynamical	principle.	
!Analogous	to	QCD	on	the	laTce,	CDT	uses	a	laTce	regulariza%on	to	
define	a	theory	of	quantum	gravity	nonperturba%vely.	However,	the	
laTces	are	dynamical	and	no	laTce/background	is	dis%nguished.		
!As	expected,	the	theory	has	divergences	in	the	con%nuum	limit	as	the	
UV	regulator	is	removed.	They	must	be	renormalized	appropriately.	
!A	possible	scenario	to	render	the	theory	nonperturba%vely	well-
defined	and	renormalizable	is	that	of	“asympto%c	safety”.		
!																																									c.f.	Reuter’s	plenary	talk	on	Wednesday	
!Quan%ta%ve	results	so	far	are	in	a	highly	quantum	fluctua%ng	regime,	
far	away	from	(semi-)classicality,	apart	from	a	few	global	observables.	



The	Story	of	(Causal)	Dynamical	Triangula@ons
This	approach	to	quantum	gravity	(1998)					!!!!grew	out	of	a	confluence	of	ideas:	!!!!!•		the	primacy	of	pure	geometry	in	the		
sense	of	Einstein’s	rods	and	clocks		
(measuring	distances,	not	metrics	gμν);	
!•		using	powerful	numerical	methods	to		

describe	such	geometry	far	away	from	a		
flat-space,	perturba%ve	regime;	
!•		subsequently,	the	realiza%on	that	the	imposi%on	of	a	local	causal	

structure	on	path	integral	histories	appears	to	be	necessary	to	obtain	a	
good	classical	limit	in	four	dimensions	(DT	→	CDT)

(J.	Ambjørn,	A.	Görlich,	J.	Jurkiewicz	&	RL,	“Nonperturba%ve	Quantum	
Gravity”,	Physics	Report	519	(2012)	127	[arXiv:	1203.3591])	

A	typical	path	integral	history	(glued	
from	triangles	in	2d	quantum	gravity)



The	amazing	richness	of	nonperturba@ve	
dynamics,	uncovered	by	(C)DT

CDT	depends	on	a	minimalist	set	of	
ingredients	and	few	free	parameters	(2),	
and	is	conceptually	very	simple.

However,	its	nonperturba%ve	dynamics	
isn’t.	Extrac%ng	it	via	suitable	observables	
isn’t	either.

We	know	liOle	about	the	quantum	dynamics	of	higher-dimensional	
geometry	“an	sich”	(arer	Wick	rota%on	given	by	sta%s%cal	par%%on	
func%ons).	—	How	many	theories?	With	what	universal	proper%es?	
!										nonperturba%ve	=	ac%on	vs.	measure,	energy	vs.	entropy	

!classical	GR	“intui%on”	not	a	good	guide	(e.g.	dimensional	reduc%on)



Focus	of	today’s	short	CDT	review	talk

•		emergence	of	semiclassical	de	SiOer	space	from	“quantum	foam”	
•		scale-dependent	dimensionality	(Planckian	2	→	classical	4)	
•		CDT	quantum	gravity	in	lower	dimensions	(2&3)	
•		Locally	Causal	Dynamical	Triangula%ons	(enforcing	causal	structure	
without	global	laTce	“%me”)	
•		CDT	with	toroidal	spa%al	slices

Results	I	will	not	talk	about:

•		lightning	introduc%on	to	CDT	
•		“effec%ve	transfer	matrix”	for	CDT	
•		new	quan%ta%ve	results	on	the	phase	structure	
•		applicability	of	‘standard’	renormaliza%on	group	methods		
•		Wilson	loop	observables

Coumbe’s	talk	in	this	session
Cooperman’s	poster	contribu%on



Quantum	Gravity	from	CDT
is	a	nonperturba6ve	implementa%on	of	the	gravita%onal	path	integral,	
!
!
!
!

much	in	the	spirit	of	laTce	quantum	field	theory,	but	based	on	dynamical	
triangular	laTces,	reflec%ng	the	dynamical	nature	of	space%me	geometry:

					recent	contributors:	J.	Ambjørn,	D.	BenedeT,	T.	Budd,	J.	Cooperman,	D.	Coumbe,	B.Durhuus,						
						J.	Gizbert-Studnicki,	L.	Glaser,	A.	Görlich,	J.	Henson,	A.	Ipsen,	T.	Jonsson,	J.	Jurkiewicz,		
						N.Klitgaard,	A.	Kreienbuehl,	J.	Laiho,	T.	So%riou,	Y.	Watabiki,	S.	Weinfurtner,	J.	Wheater	…
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This	describes	“pure	gravity”;	inclusion	of	maOer	fields	is	straigh�orward.		
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	represen%ng	curved	space%mes	by	piecewise	flat	triangula%ons	makes	
the	path	integral	well	defined	at	an	intermediate	(“regularized")	stage

Key	ingredients	of	the	CDT	approach:

	crucial	to	obtain	a	semiclassical	limit:	
space%mes	must	have	causal	structure	
!	crucial	in	d	=	4:	nonperturba%ve	

comput.	tools	(Monte	Carlo	simula%ons)	
to	extract	quan%ta%ve	results

approxima%ng	a	given	classical	curved	
surface	through	triangula%on

Quantum	Theory:	approxima%ng	the	space	of	all	
curved	geometries	by	a	space	of	triangula%ons	

simplicial	4d	building	blocks	of	CDT

%me
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spacelike	edge,	squared	length	a2	
%melike	edge,	squared	length	-αa2,	α	>	0



		usual	problem:	cannot	evaluate	complex	PI	and	there	is	no	Wick	
rota%on	-	do	Euclidean	QG	instead,	i.e.	∫Dg	exp(-Seu)	?	

	CDT	has	a	well-defined	analy%c	con%nua%on;	“Wick-rotated”	
Lorentzian	PI	is	not	equivalent	to	the	Euclidean	PI					

! 		usual	problem:	there	are	redundancies	because	of	diffeomorphism	or	
other	gauge	symmetries,	leading	to	unwanted	divergences	

	CDT	has	no	residual	gauge	symmetries,	works	with	geometries	
				 		frequent	problem:	PI	highly	divergent,	no	unique	renormaliza%on	

	number	of	configura%ons	in	CDT	exponen%ally	bounded	
!		frequent	problem:	cannot	do	any	computa%ons,	cannot	evaluate	PI	

	CDT	amenable	to	MC	simula%ons;	quan%ta%ve	results,	falsifiable!	
!		usual	problem:	why	should	PI	lead	to	a	unitary	theory?		

	CDT	reflec%on-posi%ve	w.r.t.	discrete	“proper	%me”,	hence	unitary!

What	makes	CDT	Quantum	Gravity	unique?
Imagine	you	wanted	to	do	a	nonperturba%ve	path	integral	(PI)	…



Example:	ferromagne%c	(magne%c	moments	lined		
up)	to	paramagne%c	transi%on	in	a	magnet,	with		

magne%za%on	M	as	order	parameter

The	phase	structure	of	CDT

The	phase	space	of	CDT	is	spanned	by	the	bare	coupling	constants		
appearing	in	the	Wick-rotated	weight	factors	exp(-SEH).	Different		
phases,	separated	by	phase	transi%ons,	display	qualita%vely	different	
behaviour.

For	a	dynamical	system	of	
intrinsic	geometry	like	CDT,	
what	are	good	order	
parameters,	characterizing	
the	phases	and	the	phase	
transi%ons	between	them? temperature	T

M

Tc



DT	phase	diagram:	nonperturba@ve	surprises

Degenerate	behaviour	
appears	to	be	generic.	

κ0	∼	1/GNbare

CDT:	imposing	a	well-behaved	causal	
structure	on	path	integral	configura%ons	
(suppressing	spa%al	topology	change)	
modifies	this	just	enough	to	allow	for	
interes%ng	con%nuum	limits.
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Phase	diagram	of	CDT	quantum	gravity	in	4D

λ		~	cosmological	constant	
κ0	~	1/GN	inverse	Newton’s						
								constant	
Δ		~	relative	time/space	scaling	Δ(α)	
	c		~	numerical	constant,	>0	
Ni	~	#	of	triangular	building		
								blocks	of	dimension	i

The	par%%on	func%on	is	defined	for	λ	>	λcrit	(κ0,Δ);		
approaching	the	cri%cal	surface	from	above	=	taking	infinite-volume	limit.		
red	lines	~	phase	transi%ons		
!(J.	Ambjørn,	J.	Jurkiewicz,	RL,	PRD	72	(2005)	064014;	
J.	Ambjørn,		A.	Görlich,	S.	Jordan,	J.	Jurkiewicz,	RL,	PLB	690	(2010)	413)
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The	CDT	gravita%onal	ac%on	is	simple:



Phase	diagram	of	CDT	quantum	gravity	I
Unlike	DT,	CDT	exhibits	a	phase	of	extended	geometry	with	Hausdorff	
dimension	4.	On	the	hypersurface	λ	=	λcrit,	the	“volume	profile”		
of	the	dynamically	generated	quantum	universe	characterizes	the	
phase.	Only	“phase	C”	has	a	large-scale	limit	compa%ble	with	GR.

(data	taken	at	N4=80.000)

second-order phase transition line

first-order 	
phase transition line

hV3(t)i



Phase	diagram	of	CDT	quantum	gravity	I

(data	taken	at	N4=80.000)

second-order phase transition line

first-order 	
phase transition line

unique!

(J.	Ambjørn,	S.	Jordan,	J.	Jurkiewicz,	RL,	PRL	107	(2011)	211303;	PRD	85	(2012)	124044)

Unlike	DT,	CDT	exhibits	a	phase	of	extended	geometry	with	Hausdorff	
dimension	4.	On	the	hypersurface	λ	=	λcrit,	the	“volume	profile”		
of	the	dynamically	generated	quantum	universe	characterizes	the	
phase.	Only	“phase	C”	has	a	large-scale	limit	compa%ble	with	GR.

hV3(t)i



Phase	diagram	of	CDT	quantum	gravity	II

Recent	simula%ons,	using	a	small	%me	extension	of	just	two	%me	
steps	have	revealed	that	there	is	yet	another	transi%on	line,	dividing	
phase	C	into	C1	and	C2	(also	called	“phase	D”	or	“bifurca%on	phase”)!

(data	taken	at	N4=80.000)

another phase transition line

first-order 	
phase transition lineNEW!

C2
C1



The	effec@ve	transfer	matrix	for	CDT

J.	Ambjørn,		J.	Gizbert-Studnicki,	A.	Görlich,	J.	Jurkiewicz,	JHEP	1209	(2012)	017,	JHEP	1406	(2014)	034

•	instead	of	simula%ng	the	“en%re	universe”	(in	phase	C),														
with	Δt=40∼80a,	consider	just	a	single	time	step	Δt=a	
!•	the	(matrix	elements	of	the)	associated	full	transfer	matrix	are

•	remarkably,	it	has	been	shown	that	a	much	simpler	object,	the	
reduced	or	“effec%ve”	transfer	matrix	M,	which	only	keeps	track	of	
the	three-volume	V3	at	fixed	t,	suffices	to	reconstruct	all	previous	
results	on	the	average	volume	profile	and	its	quantum	fluctua%ons

hT (3)(t+ a)|M|T (3)(t)i =
X
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•	analyzing	the	effec%ve	Lagrangian	Leff	in	phases	B	and	C	led	to	
the	discovery	of	the	new	phase	transi%on



How	do	the	phases	C1	and	C2	differ?

In	phase	C1	(the	old	“de	SiOer”	phase)	one	finds	to	good	precision

for	parameters	Γ,	μ,	λ.	This	can	be	directly	compared	to	the	minisuper-	
space	ac%on	à	la	Hartle/Hawking	genera%ng	de	SiOer	space,	namely,
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Instead,	in	the	new	phase	C2	and	in	phase	B	one	finds	a	double-peak	
structure	as	func%on	of	the	difference	of	the	neighbouring	3-volumes:
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The	measured	matrix	elements	of	the	CDT	effec%ve	transfer	matrix:	
as	the	coupling	Δ	is	lowered	from	0.3	to	0.1	(κ0=2.2),	at	the	new	C1-C2	
phase	transi%on	the	single	peak	changes	to	a	double	peak.

•		Why	do	neighbouring	slices	prefer	unequal	volumes	in	phase	C2?	
!•		Why	was	this	phase	transi%on	not	no%ced	before?	
!•		What	is	a	good	order	parameter	to	study	the	transi%on?	

!•		What	is	the	order	of	the	transi%on?

Δ=

(total	volume	s=30k)



In	phase	C2	a	new	geometric	substructure	appears,	namely,	a	vertex	v	of	
very	high	order	O(v)	on	every	second	slice	of	integer	%me,	reminiscent	
of	what	happened	in	the	crumpled	phase	of	DT.	Crossing	into	phase	B,	
only	a	pair	of	such	ver%ces	remains,	with	a	“pancake”	in	between.

J.	Ambjørn,	D.	Coumbe,	J.	Gizbert-Studnicki,	J.	Jurkiewicz,	JHEP	1508	(2015)	033;	D.Coumbe,	
J.	Gizbert-Studnicki,	J.	Jurkiewicz,	arXiv:1510.086;	J.	Ambjørn,	J.	Gizbert-Studnicki,	A.	Görlich,	
J.	Jurkiewicz,	N.Klitgaard,	RL,	to	appear

The	answers	to	these	ques@ons	are	all	related

Poten%ally,	a	new	candidate	for	defining	con%nuum	gravity!

•	Slices	with	high-order	vertex	have	lower	
V3,	leading	to	a	modula%on	of	the	standard	
volume	profiles.	
!•	A	good	order	parameter	appears	to	be						

|max[O(v(t+1))]-max[O(v(t))]|.	
!!•	Tenta%vely,	this	is	related	to	a	breaking	of	

homogeneity	and	isotropy	of	geometry.	(schema%c)



Making	contact	with	con@nuum	physics

As	emphasized,	the	triangulated	laTce	structure	of	CDT	is	part	of	a	
regulariza%on,	which	to	a	large	degree	is	arbitrary.	For	example,	one	
might	just	as	well	have	used	square-shaped	building	blocks.	
!When	talking	about	specific	numerical	results	in	(C)DT	-	pertaining	
to	physics	at	the	Planck	scale	or	at	larger	macroscopic	scales	-	one	
means	results	obtained	in	a	scaling	limit	of	infinitely	many	building	
blocks	(using	finite-size	scaling);	only	then	do	they	stand	a	chance	of	
being	universal	and	not	just	laTce	artefacts.	Of	course,	universality	
is	a	property	that	needs	to	be	demonstrated.	
!This	way	of	construc%ng	a	nonperturba%ve	theory	raises	…



!‣		Is	there	a	con%nuum	limit	where	physical	observables	become	
independent	of	the	UV	cut-off	and	of	regularisa%on	“artefacts”?	

‣		Do	standard	laTce	renormaliza%on	methods	apply?	

‣		Can	we	confirm	the	presence	of	an	ultraviolet	fixed	point	as	signalled	
in	FRG	studies	of	the	asympto%c	safety	scenario?	

‣		Does	QG	exist	as	a	nontrivial	QFT	when	the	UV	regulator	is	removed?	

‣		What	is	the	UV	theory/comple%on?

These	are	relevant	physical	ques@ons,	but	highly	nontrivial	in	
nonperturba@ve	quantum	gravity,	where	there	is	no	a	priori	
background	metric	or	measuring	grid,	and	“geometry”	and	
“length”	are	generated	dynamically.	A	“naïve”	correlator	G(x,y)	
and	associated	correla@on	length	are	not	well	defined.

Some	important	ques@ons
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Standard	renormaliza@on	can	be	applied!

L

d

Having	located	lines	of	second-order	transi%on	points,	we	want	to	
inves%gate	the	scaling	behaviour	of	the	theory	in	their	vicinity.	
!We	are	interested	in	renormaliza%on	group	(RG)	flows	probing	ever	
shorter	distances.	Since	there	is	no	correla%on	length	immediately	
available,	we	let	the	linear	laTce	size	N41/4	⇾∞ while	keeping	physics	
constant.	
!Idea:	use	the	length	scales	associated		
with	the	dynamically	generated	de		
SiOer	universe	in	CDT	to	define	physical		
“yards%cks”.		
!Under	simplifying	assump%ons	this	has	enabled	us	to	perform	a	first	
explicit	study	of	such	RG	flows	near	the	B-C2	transi%on.	(J.	Ambjørn,	A.	
Görlich,	J.	Jurkiewicz,	A.	Kreienbühl,	RL,	CQG	31	(2014)	1650)	
!An	analogous	study	needs	to	be	done	near	the	C1-C2	phase	transi%on.	



Observables,	observables,	observables	…
The	RG	study	highlights	the	need	for	more	observables.	
!In	nonperturba%ve	quantum	gravity,	observables	must	be	invariantly	
defined,	without	reference	to	coordinates	or	any	background	(unless	
obtained	dynamically).	Standard	QFT	observables	can	some%mes	be	
adapted	to	be	meaningful	in	the	func%onal	integral	over	geometry.	
!Example:	a	two-point	func%on	G2(x,y)	is	not	a	good	observable,	since	we	
cannot	fix	specific	points	x	and	y	in	the	path	integral,	but		

Idea:	can	we	define	observables	involving	gravita%onal	Wilson	loops		
!
!
(referring	to	en%re	curves	γ,	not	just	points)	in	a	similar	way,	to	obtain	
curvature	informa%on	about	the	underlying	quantum	space%me?	
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Z
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Defining	a	Wilson	loop	observable	in	CDT

One	lets	the	loop	γ	coincide	with	the	world	line	
L	of	a	par%cle	moving	forward	in	%me.	The	
loops	wind	once	around	the	compac%fied	%me	
direc%on	of	the	triangulated	space%mes,	which	
have	topology	S1	x	S3,	as	usual.	
!Correspondingly,	one	adds	to	the	pure-gravity	
ac%on	a	term	for	a	free	massive	point	par%cle	

S p.p.=m

Z
dl ! S p.p.

CDT = m0NL

where	NL	=	number	of	four-simplices	along	L.

In	Monte	Carlo	simula%ons	for	the	combined	gravity-par%cle	system	it	is	
straigh�orward	to	compute	Wilson	lines	and	extract	two	coordinate-
independent	trace	invariants,	angles	θ1,	θ2	labelling	SO(4)-conjugacy	classes.	
!J.	Ambjørn,	A.	Görlich,	J.	Jurkiewicz,	RL,	Phys.	Rev.	D92	(2015)	2,	024013

t=0

t=T

L



The	measured	distribu%on	of	the	invariant	angles	θi	shown	here	is	in	almost	
perfect	agreement	with	the	theore%cal	result	one	obtains	from	assuming	a	
uniform	distribu%on	of	the	holonomy	matrices	over	the	group	manifold	SO(4),

θ1
θ2

P (✓1, ✓2) =
1

⇡2
sin2

✓
✓1 + ✓2

2

◆
sin2

✓
✓1 � ✓2

2

◆
.

Despite	being	a	coordinate-free	approach,	holonomies	and	Wilson	loops	are	
straigh�orward	to	define	and	implement	in	CDT,	without	significant	
discre%za%on	effects.	The	large	loops	considered	here	have	not	uncovered	
interes%ng	informa%on	about	(averaged)	curvature	yet,	but	other	more	local	
curvature	observables	are	being	developed.	



Summary	and	conclusions
Despite	its	very	simple	set-up	and	having	just	two	tunable	couplings,	
CDT	has	an	amazingly	rich	phase	structure,	with	at	least	one,	
possibly	two	lines	of	second-order	phase	transi%ons.		
!CDT	quantum	gravity	enjoys	a	number	of	nice	features	that	enable	it	
to	reach	where	other	nonperturba%ve	approaches	do	not,	and	
obtain	some	highly	nontrivial	outcomes.	The	recent	results	I	focused	
on	today	underline	the	promise	of	this	candidate	theory	of	QG.

To	conclude,	good	old	quantum	field	theory,	without	exo%c	
ingredients	and	adapted	to	the	case	of	dynamical	geometry,	may	
provide	the	answer	to	quantum	gravity	arer	all!		
!Work	is	in	progress	on	iden%fying	and	measuring	more	observables,	
to	complete	the	theory	further	and	eventually	predict	observable	
effects.	



 Thank you!

GR21,	New	York	City,		
11	Jul	2016
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