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Quantum Gravity, back to basics

Causal Dynamical Triangulations (CDT) is an attempt to bring back
guantum gravity into the fold of ordinary quantum field theory,
without appealing to some grand unified dynamical principle.

Analogous to QCD on the lattice, CDT uses a lattice regularization to
define a theory of quantum gravity nonperturbatively. However, the
lattices are dynamical and no lattice/background is distinguished.

As expected, the theory has divergences in the continuum limit as the
UV regulator is removed. They must be renormalized appropriately.

A possible scenario to render the theory nonperturbatively well-
defined and renormalizable is that of “asymptotic safety”.

—} c.f. Reuter’s plenary talk on Wednesday

Quantitative results so far are in a highly quantum fluctuating regime,
far away from (semi-)classicality, apart from a few global observables.



The Story of (Causal) Dynamical Triangulations

This approach to quantum gravity (1998)
grew out of a confluence of ideas:

e the primacy of pure geometry in the
sense of Einstein’s rods and clocks
(measuring distances, not metrics gu);

e using powerful numerical methods to %
describe such geometry far away froma  Atypical path integral history (glued

: : from triangles in 2d quantum gravity)
flat-space, perturbative regime;

e subsequently, the realization that the imposition of a local causal
structure on path integral histories appears to be necessary to obtain a
good classical limit in four dimensions (DT - CDT)

(J. Ambjgrn, A. Gorlich, J. Jurkiewicz & RL, “Nonperturbative Quantum
Gravity”, Physics Report 519 (2012) 127 [arXiv: 1203.3591])



The amazing richness of nonperturbative
dynamics, uncovered by (C)DT
CDT depends on a minimalist set of

ingredients and few free parameters (2),
and is conceptually very simple.

However, its nonperturbative dynamics
isn’t. Extracting it via suitable observables
isn’t either.

We know little about the quantum dynamics of higher-dimensional
geometry “an sich” (after Wick rotation given by statistical partition
functions). — How many theories? With what universal properties?

nonperturbative = action vs. measure, energy vs. entropy

classical GR “intuition” not a good guide (e.g. dimensional reduction)



Focus of today’s short CDT review talk

lightning introduction to CDT

“effective transfer matrix” for CDT

new gquantitative results on the phase structure
applicability of ‘standard’ renormalization group methods
Wilson loop observables

Results | will not talk about:

® emergence of semiclassical de Sitter space from “quantum foam”
e scale-dependent dimensionality (Planckian 2 = classical 4)

e CDT quantum gravity in lower dimensions (2&3)

e |ocally Causal Dynamical Triangulations (enforcing causal structure
without global lattice “time”)

e CDT with toroidal spatial slices

# Coumbe’s talk in this session
# Cooperman’s poster contribution



Quantum Gravity from cDT*

is @ nonperturbative implementation of the gravitational path integral,

Newton’s

constant Z(GN, / Dg ezsgi [ ]

Einstein-Hilbert
: spacetimes fiac
cosmological constant gEg

much in the spirit of lattice quantum field theory, but based on dynamical
triangular lattices, reflecting the dynamical nature of spacetime geometry:

: SRegge T
Z(Gn,A) := lim E Gy 1]
. a—0 C
e N—o0o0 1nequiv.
triangul.s
Teg, |Aut(T)|
# building blocks €Y Y ;

This describes “pure gravity”; inclusion of matter fields is straightforward.

* recent contributors: J. Ambjgrn, D. Benedetti, T. Budd, J. Cooperman, D. Coumbe, B.Durhuus,

J. Gizbert-Studnicki, L. Glaser, A. Gorlich, J. Henson, A. Ipsen, T. Jonsson, J. Jurkiewicz,
N.Klitgaard, A. Kreienbuehl, J. Laiho, T. Sotiriou, Y. Watabiki, S. Weinfurtner, J. Wheater ...
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Key ingredients of the CDT approach:

© representing curved spacetimes by piecewise flat triangulations makes
the path integral well defined at an intermediate (“regularized") stage

approximating a given classical curved Quantum Theory: approximating the space of all

surface through triangulation curved geometries by a space of triangulations
time
A

t+1

© crucial to obtain a semiclassical limit:
spacetimes must have causal structure

© crucial in d = 4: nonperturbative
comput. tools (Monte Carlo simulations) @D
to extract quantitative results simplicial 4d building blocks of CDT

(3.2)
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What makes CDT Quantum Gravity unique?

Imagine you wanted to do a nonperturbative path integral (PI) ...

@ usual problem: cannot evaluate complex Pl and there is no Wick
rotation - do Euclidean QG instead, i.e. [Dg exp(-S¢Y) ?
™ CDT has a well-defined analytic continuation; “Wick-rotated”
Lorentzian Pl is not equivalent to the Euclidean Pl

@ usual problem: there are redundancies because of diffeomorphism or
other gauge symmetries, leading to unwanted divergences
™ CDT has no residual gauge symmetries, works with geometries

© frequent problem: Pl highly divergent, no unique renormalization
™ number of configurations in CDT exponentially bounded

© frequent problem: cannot do any computations, cannot evaluate Pl
™ CDT amenable to MC simulations; quantitative results, falsifiable!

@ usual problem: why should Pl lead to a unitary theory?
™ CDT reflection-positive w.r.t. discrete “proper time”, hence unitary!




The phase structure of CDT

The phase space of CDT is spanned by the bare coupling constants
appearing in the Wick-rotated weight factors exp(-St"). Different
phases, separated by phase transitions, display qualitatively different
behaviour.

For a dynamical system of M
intrinsic geometry like CDT,

what are good order

parameters, characterizing

the phases and the phase

transitions between them? r » temperature T

Example: ferromagnetic (magnetic moments lined
up) to paramagnetic transition in a magnet, with
magnetization M as order parameter




DT phase diagram: nonperturbative surprises

/}\ A singular
e N vertex! }\_crit(KO)
const. Z exists
branched-polymer
first-order phase, dn=2
phase transition \
crumpled &/ 3\% -
phase, d4= . t{\\/\/ N>
. Z=x _
‘ | Degenerate behaviour
— > :
| i it Ko appears to be generic.

phase diagram DT 0 - 1/Gybre

CDT: imposing a well-behaved causal
structure on path integral configurations
(suppressing spatial topology change)
modifies this just enough to allow for
interesting continuum limits.

N.B.: singular branching points >*k



Phase diagram of CDT quantum gravity in 4D

A The CDT gravitational action is simple:

ACl‘it (KO,A)
Silegge — —koNo + N4(C/<J() aF )\) A

+A(2Ni4,1) i N4£372))

A ~ cosmological constant

Ko~ 1/Gy inverse Newton’s
constant

A ~ relative time/space scaling A(a)

c ~ numerical constant, >0

N; ~ # of triangular building
blocks of dimension i

Ko

The partition function is defined for A > A" (ko,A);

approaching the critical surface from above = taking infinite-volume limit.
red lines ~ phase transitions

(J. Ambj@rn, J. Jurkiewicz, RL, PRD 72 (2005) 064014;
J. Ambjgrn, A. Gorlich, S. Jordan, J. Jurkiewicz, RL, PLB 690 (2010) 413)



Phase diagram of CDT quantum gravity |

Unlike DT, CDT exhibits a phase of extended geometry with Hausdorff
dimension 4. On the hypersurface A = At the “volume profile” (V3(?))
of the dynamically generated quantum universe characterizes the
phase. Only “phase C” has a large-scale limit compatible with GR.
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Phase diagram of CDT quantum gravity |

Unlike DT, CDT exhibits a phase of extended geometry with Hausdorff
dimension 4. On the hypersurface A = A“t the “volume profile” (V5(t))
of the dynamically generated quantum universe characterizes the
phase. Only “phase C” has a large-scale limit compatible with GR.
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(J. Ambjgrn, S. Jordan, J. Jurkiewicz, RL, PRL 107 (2011) 211303; PRD 85 (2012) 124044)



Phase diagram of CDT quantum gravity Il

Recent simulations, using a small time extension of just two time
steps have revealed that there is yet another transition line, dividing
phase Cinto C; and C; (also called “phase D” or “bifurcation phase”)!
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The effective transfer matrix for CDT

e instead of simulating the “entire universe” (in phase C),
with At=40~80a, consider just a single time step At=a

e the (matrix elements of the) associated full transfer matrix are
]. _SRegge [T]

T M|T®) (t)) =
(T®(t +a) MIT®) (1) > e
I GG B ()

e remarkably, it has been shown that a much simpler object, the
reduced or “effective” transfer matrix M, which only keeps track of

the three-volume V; at fixed t, suffices to reconstruct all previous

results on the average volume profile and its qguantum fluctuations

(n|M|m) o« e” " »™ n = V3(t +a), m = Va(¥)

® analyzing the effective Lagrangian Leg in phases B and C led to

the discovery of the new phase transition
J. Ambjgrn, J. Gizbert-Studnicki, A. Gérlich, J. Jurkiewicz, JHEP 1209 (2012) 017, JHEP 1406 (2014) 034



How do the phases C; and C; differ?

In phase C; (the old “de Sitter” phase) one finds to good precision

(n|Mc,|m) =e - L faln bl X o))

for parameters I, u, A. This can be directly compared to the minisuper-
space action a la Hartle/Hawking generating de Sitter space, namely,

S 247T1GN /d \/gT( ttv? §) - ko Vi P (8) —)\Vg(t)>

Instead, in the new phase C; and in phase B one finds a double-peak
structure as function of the difference of the neighbouring 3-volumes:

n—m—c[n+m])2 n—m-clnt+m])?
<7’L’M02|m>:(e_%( (n—|—[m_)|_ L _l_e_%( (jz——i—[m—)l_ 2 )e_%[ﬂ(n‘l‘m)l/s_)‘(n‘l'm)]



The measured matrix elements of the CDT effective transfer matrix:
as the coupling A is lowered from 0.3 to 0.1 (ko=2.2), at the new C;-C;
phase transition the single peak changes to a double peak.

E = =

<n|M|s-n>
A=
— 0.10
— 0.15
0.20
— 0.25
— 0.30

[/
A TANX

Dt M —nN=S-— | volume s=30k
000 <2000 - g oo M=-nN=s-2n (total volume s=30k)

ny do neighbouring slices prefer unequal volumes in phase C,?
ny was this phase transition not noticed before?

nat is a good order parameter to study the transition?

nat is the order of the transition?



The answers to these questions are all related

In phase C; a new geometric substructure appears, namely, a vertex v of
very high order O(v) on every second slice of integer time, reminiscent
of what happened in the crumpled phase of DT. Crossing into phase B,
only a pair of such vertices remains, with a “pancake” in between.

A

\ time

e Slices with high-order vertex have lower
V3, leading to a modulation of the standard
volume profiles.

e A good order parameter appears to be
| max[O(v(t+1))]-max[O(v(t))]].

sl o4 e Tentatively, this is related to a breaking of

(schematic)

homogeneity and isotropy of geometry.

Potentially, a new candidate for defining continuum gravity!

J. Ambjgrn, D. Coumbe, J. Gizbert-Studnicki, J. Jurkiewicz, JHEP 1508 (2015) 033; D.Coumbe,
J. Gizbert-Studnicki, J. Jurkiewicz, arXiv:1510.086; J. Ambj@rn, J. Gizbert-Studnicki, A. Gorlich,
J. Jurkiewicz, N.Klitgaard, RL, to appear



Making contact with continuum physics

As emphasized, the triangulated lattice structure of CDT is part of a
regularization, which to a large degree is arbitrary. For example, one
might just as well have used square-shaped building blocks.

When talking about specific numerical results in (C)DT - pertaining
to physics at the Planck scale or at larger macroscopic scales - one
means results obtained in a scaling limit of infinitely many building
blocks (using finite-size scaling); only then do they stand a chance of
being universal and not just lattice artefacts. Of course, universality
is a property that needs to be demonstrated.

This way of constructing a nonperturbative theory raises ...



Some important questions

» Is there a continuum limit where physical observables become
independent of the UV cut-off and of regularisation “artefacts”?
» Do standard lattice renormalization methods apply?

» Can we confirm the presence of an ultraviolet fixed point as signalled
in FRG studies of the asymptotic safety scenario?

» Does QG exist as a nontrivial QFT when the UV regulator is removed?
» What is the UV theory/completion?

These are relevant physical questions, but highly nontrivial in
nonperturbative quantum gravity, where there is no a priori
background metric or measuring grid, and “geometry” and
“length” are generated dynamically. A “naive” correlator G(x,y)
and associated correlation length are not well defined.
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Standard renormalization can be applied!

Having located lines of second-order transition points, we want to
investigate the scaling behaviour of the theory in their vicinity.

We are interested in renormalization group (RG) flows probing ever
shorter distances. Since there is no correlation length immediately
available, we let the linear lattice size Ns/% - while keeping physics
constant.

Idea: use the length scales associated
with the dynamically generated de
Sitter universe in CDT to define physical
“yardsticks”.
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Under simplifying assumptions this has enabled us to perform a first
explicit study of such RG flows near the B-C; transition. (J. Ambjarn, A.
Gorlich, J. Jurkiewicz, A. Kreienbihl, RL, CQG 31 (2014) 1650)

An analogous study needs to be done near the C;1-C, phase transition.




Observables, observables, observables ...

The RG study highlights the need for more observables.

In nonperturbative quantum gravity, observables must be invariantly
defined, without reference to coordinates or any background (unless
obtained dynamically). Standard QFT observables can sometimes be
adapted to be meaningful in the functional integral over geometry.

Example: a two-point function Gy(x,y) is not a good observable, since we
cannot fix specific points x and y in the path integral, but

G%r) : / Dlg,Je—Slom /dx di/asl e Bl (i

geodesic distance

ldea: can we define observables involving gravitational Wilson loops

WW (F) exad TrPeXp% F / Levi-Civita connection

-
(referring to entire curvesy, not just points) in a similar way, to obtain

curvature information about the underlying quantum spacetime?



Defining a Wilson loop observable in CDT

One lets the loop y coincide with the world line

t=T L of a particle moving forward in time. The
loops wind once around the compactified time
direction of the triangulated spacetimes, which
have topology S* x S3, as usual.

_=T Correspondingly, one adds to the pure-gravity
action a term for a free massive point particle
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where N. = number of four-simplices along L.

In Monte Carlo simulations for the combined gravity-particle system it is
straightforward to compute Wilson lines and extract two coordinate-
independent trace invariants, angles 61, 6, labelling SO(4)-conjugacy classes.

J. Ambj@rn, A. Gorlich, J. Jurkiewicz, RL, Phys. Rev. D92 (2015) 2, 024013



The measured distribution of the invariant angles 6; shown here is in almost
perfect agreement with the theoretical result one obtains from assuming a
uniform distribution of the holonomy matrices over the group manifold SO(4),

P(61,02) = % sin” (91 ;92> sin? (01 ; 92).

T

Despite being a coordinate-free approach, holonomies and Wilson loops are
straightforward to define and implement in CDT, without significant
discretization effects. The large loops considered here have not uncovered
interesting information about (averaged) curvature yet, but other more local
curvature observables are being developed.



Summary and conclusions

Despite its very simple set-up and having just two tunable couplings,
CDT has an amazingly rich phase structure, with at least one,
possibly two lines of second-order phase transitions.

CDT quantum gravity enjoys a number of nice features that enable it
to reach where other nonperturbative approaches do not, and
obtain some highly nontrivial outcomes. The recent results | focused
on today underline the promise of this candidate theory of QG.

To conclude, good old quantum field theory, without exotic
ingredients and adapted to the case of dynamical geometry, may
provide the answer to quantum gravity after all!

Work is in progress on identifying and measuring more observables,
to complete the theory further and eventually predict observable
effects.
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