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Why compute 〈Tab〉?

• Good way to study quantum effects
• Could provide insight into the information issue and the

question what is the end point of black hole evaporation?
• Needed to solve the semiclassical backreaction equations

Gab = 8π〈Tab〉

• Numerical computations in 4D have been done for eternal
black holes but not those that form from collapse



Technical difficulties

• Wave equations for the quantum fields are not completely
separable

• Renormalization scheme that works for numerical
computations must be worked out



Way to Sidestep PDE’s

Compute 〈Tab〉 in a spacetime

• that is a solution to the classical Einstein equations
• that is spherically symmetric
• has matter in the form of a collapsing shell

Advantages
• Flat space inside the shell - solutions to mode equation are

known
• Schwarzschild spacetime outside - mode equation is

separable
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Spherically Symmetric Collapsing Null Shell

• Used by Vilkovisky, Fabbri and Navarro-Salas, ... to study
aspects of the Hawking effect in 4D

Flat

Sch



Method to Compute the Stress Tensor

• Massless minimally coupled scalar field φ with �φ = 0

• Stress tensor is 〈Tab〉= limx ′→x DabG(1)(x,x ′)
• G(1)(x,x ′) = 〈in|{φ(x),φ(x ′)}|in〉
• Expand φ in terms of modes

f in
ω`m =

Y`m(θ ,φ)

r
√

4πω
ψ

in
ω`(t , r)

• Find

G(1)(x,x ′) = ∑
`,m

∫
∞

0
dω{f in

ω`m(x)f in∗
ω`m(x ′) + cc}

• Inside the shell f in is flat space mode function
• Problem is finding f in outside the shell
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f in in Sch region

v = v0

I −

• Want to compute 〈Tab〉 in the shaded region

• Know f in on v = t + r = v0 and on I − for v > v0

• Expand f in in terms of a complete set of Schwarzschild
modes
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Pure Schwarzschild Modes

I −H−

H+ I +

• Complete orthonormal set: fH− and fI − .
• On H−, fH− ∼ e−iω(t−r∗)

• On I −, fI − ∼ e−iω(t+r∗)



Expansion of the in modes

• In pure Schwarzschild spacetime

(f in
ω`m)Sch = ∑

`′,m′

∫
∞

0
dω
′
[
AI −

ω`mω ′`′m′ f
I −
ω ′`′m′ + BI −

ω`mω ′`′m′(f
I −
ω ′`′m′)

∗

+AH−
ω`mω ′`′m′ f

H−
ω ′`′m′ + BH−

ω`mω ′`′m′(f
H−
ω ′`′m′)

∗
]

• Modes are orthonormal w.r.t. the scalar product

(φ1,φ2) =−i
∫

Σ
dΣ
√

gΣna
φ1
↔
∂ a φ

∗
2

• So
AI −

ω`mω ′`′m′ =
(

(f in
ω`m)Sch, fI −

ω ′`′m′

)
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Method

I −H−

H+ I +

• Key point: Matching is done in pure Schwarzschild

• Use Cauchy surface in red to compute matching
coefficients

• Then compute f in = ∑`′,m′
∫

∞

0 dω ′AI −
ω`mω ′`′m′ f

I −
ω ′`′m′ + . . .

• Then compute G(1) and 〈Tab〉
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Renormalization

Use point splitting - Christensen (1976)

• Adapted for numerical computations in static BH
spacetimes - Candelas and Howard (1984), Jensen and
Ottewill (1989), Anderson, Hiscock, and Samuel (1995),
Levi and Ori (2015)

• More adaptation may be necessary here

Alternative: Compute difference with Unruh state

〈in|Tab |in〉ren = (〈in|Tab in〉u−〈U|TabU〉u) + 〈U|TabU〉ren
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Connection with the Unruh state

(f in
ω`m)Sch = ∑

`′,m′

∫
∞

0
dω
′
[
AI −

ω`mω ′`′m′ f
I −
ω ′`′m′ + BI −

ω`mω ′`′m′(f
I −
ω ′`′m′)

∗
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ω`mω ′`′m′(f
H−
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• For the Unruh state, the complete set of modes are: fK

(positive freq. in Kruskal time on H−) plus the fI − modes

fK
ω`m = ∑

`′,m′

∫
∞

0
dω[αK

ω`m,ω ′`′m′ f
H−
ω ′`′m′ + β

K
ω`mω ′`′m′ f

H− ∗
ω ′`′m′ ]

• For ω � ω ′ and ω
′ 2� (M/r3, `2/r2), AH− →−αK and

BH− →−β K
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2D Stress Tensor

• Computed by Hiscock (1981)
• Energy flux approaches Unruh value



Particle Production for 2D Case

• Computed by Good, Anderson, and Evans
• Use wave packets

fout
jn ≡

1√
ε

∫ (j+1)ε

jε
dωe2π iωn/ε fout

ω .

• j corresponds to frequency interval and n to time interval
• Match the in and out modes and use packets to obtain a

time dependent spectrum





Summary

• A method to compute the stress tensor in a spacetime that
forms from collapse of a spherically symmetric null shell
has been discussed

• A mathematical connection between the matching
coefficients for the in state and the Unruh state has been
found

• Time-dependent spectrum of the produced particles has
been computed in 2D showing the approach to a thermal
state

• We plan to compute the stress tensor in 4D and also the
time-dependent spectrum of the produced particles


