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Introduction

Inverse problem in mechanics: Find the action or the Hamiltonian
given the second order differential equation of motion.
(Action can be obtained using Helmholtz conditions; Hamiltonian
from symmetry vectors and/or constants of motion,...)

Fundamental questions:

For a given physical equation of motion whether an action or
a Hamiltonian exists, and under what conditions?
What does the dynamics tell us about the Lagrangian and
canonical Hamiltonian structure of the underlying theory?

Goal: Assuming a specific form of cosmological dynamics, such as
which yields generic singularity resolution, find the canonical
Hamiltonian/phase space of desired modified gravity theory.

Does demanding a repulsive nature of gravity at high energy scales
implies a particular canonically conjugate phase space structure?
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For a homogeneous and isotropic universe, Raichaudhuri equation
plays the analogous role of equation of motion.

For a pressure-less fluid as an example: ä = −4πG
3 ρ a

(gravity always attractive).

Demand modifications to Raichaudhuri equation at high spacetime
curvature of the form: ä = −4πG

3 af(ρ)

Simple examples:

Gravity repulsive at high spacetime curvature

ä = −4πG
3 ρ

(
1− ρ

ρc

)
a, ä = −4πG

3 ρ
(
1− ρ2

ρc2

)
a, ...

Gravity more attractive at high spacetime curvature

ä = −4πG
3 ρ

(
1 + ρ

ρc

)
a, ä = −4πG

3 ρ
(
1 + ρ2

ρc2

)
a, ...

(Here ρc a constant to be determined by underlying theory).
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3 af(ρ)

Simple examples:

Gravity repulsive at high spacetime curvature
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Outline of the procedure

Consider a system with position variable q and velocity q̇, governed
by an equation of motion

q̈ = F (q)G(q̇)

A time independent constant of motion then given by
C = −

∫
Fdq +

∫
q̇G−1(q̇)dq̇ (in this talk: G(q̇) = 1).

Choose phase space variables: say, x1 = q and x2 = q̇.

A Hamiltonian of the system is C in terms of x1 and x2.
(Kennedy and Kerner (1965); Hojman (2014), ...)

In general, {x1, x2} = µ(x1, x2). Consistent Hamiltonian evolution
requires: ẋ1 = µ ∂H∂x2 , and ẋ2 = −µ ∂H∂x1
Conjugate momentum: p =

∫
µ−1dx2.

Canonical Hamiltonian: H(x1, p).

4 / 11



Outline of the procedure

Consider a system with position variable q and velocity q̇, governed
by an equation of motion

q̈ = F (q)G(q̇)

A time independent constant of motion then given by
C = −

∫
Fdq +

∫
q̇G−1(q̇)dq̇ (in this talk: G(q̇) = 1).

Choose phase space variables: say, x1 = q and x2 = q̇.

A Hamiltonian of the system is C in terms of x1 and x2.
(Kennedy and Kerner (1965); Hojman (2014), ...)

In general, {x1, x2} = µ(x1, x2). Consistent Hamiltonian evolution
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Example: Non-linear restoring force

Consider q̈ = −q2.

Constant of motion: C = −
∫
Fdq +

∫
q̇dq̇ = 1

2 q̇
2 + 1

3q
3.

Choose a phase space pair: say, x1 = q2, and x2 = q̇.

Then, H(x1, x2) = 1
2x

2
2 +

1
3x

3/2
1

Consistency of Hamiltonian evolution: {x1, x2} = 2x
1/2
1 = µ.

Conjugate momentum of x1:

p =
∫
µ−1dx2 =

q̇
2q

Hamiltonian in conjugate variables: H(q, p) = 2p2q + 1
3q

3
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Hamiltonian from Raichaudhuri equation and modifications

Raichaudhuri equation is of the form q̈ = F (q), with q identified
with the scale factor a.

Since gravity is a constraint theory, our goal is to find the
corresponding Hamiltonian in terms of conjugate phase space
variables, whose vanishing gives the physical solutions.

Assumptions:

The total canonical Hamiltonian of gravity and matter parts is
of the form Hg +Hm
The matter energy density satisfies the conservation law:
ρ̇+ 3H(ρ+ P ) = 0 (H = ȧ/a)

Minimally coupled matter

No new degrees of freedom when modifications introduced in
Raichaudhuri equation
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Quadratic repulsive modification to Raichaudhuri equation

ä = −4πG
3 ρ

(
1− ρ

ρc

)
a

Choose as phase space variables: x1 = a and x2 = ȧ.

The constant of motion (which serves as a Hamiltonian):

C(x1, x2) =
x22
2 −

4πG
3
Hm
a3

(
1− 1

4ρc
Hm
a3

)
x21

But this Hamiltonian not in the form H = Hg +Hm.

However, it can be expressed as:

H ≈ − 3x31
8πGα2

1
2(1±

√
1− 4α2H2) +Hm; α2 := 3

8πGρc

Both roots necessary to capture complete dynamics for the entire
allowed range of energy density.

Form of H implies, convenient to switch x1 → a3 and x2 → H.
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For negative root, consistent Hamiltonian evolution requires
{x1, x2} = µ− = −1

2

√
1− 4α2x22

Conjugate momentum: p− = −β−1 sin−1(2αx2) (β = 8πGα)

Corresponding gravity part of the Hamiltonian:
H−g = − 3x1

16πGα2 (1− cos(βp−))

Similarly for the positive root:
H+
g = − 3x1

16πGα2 (1 + cos(βp+)) with p+ = β−1 sin−1(2αx2)

p+ and p− do not belong to same range for any H. Hamiltonian
can be written in terms of canonical momentum p, defined via p+

and p−, covering the entire allowed range of H:

H = − 3x1
2α2 (1− cos(βp)) +Hm

(same as the effective Hamiltonian of spatially flat isotropic LQC!)

Polymerization appears naturally demanding repulsive gravity
without any inputs from LQG.
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Cubic repulsive modification to Raichaudhuri equation

ä = −4πG
3 ρ

(
1− ρ2

ρc2

)
a

Leads to a much more non-trivial canonical phase space. Out of
three roots, one unphysical.

Two conjugate momenta in different ranges (as in quadratic case):

pζ1 =
1

4πG

31/4

5
√

2σ

[
χ
−1
√

1 + e2i cos
−1(−χ2)e

− i
3

cos−1(−χ2)
[
− e

2i
3

cos−1(−χ2)

× 2F1

(
5
12
, 1
2
; 17
12

; e−2i cos−1(−χ2)
)

+5 2F1

(
1
12
, 1
2
; 13
12

; e−2i cos−1(−χ2)
)]]

σ = (3/(8
√
7πGρc))

1/2, η = 4πGσ, χ2 = 3
√

3σ2H2

2

A “generalized” polymerized
canonical phase space emerges.

Period of oscillation is 3/2
times smaller than the period in
quadratic repulsive case.

-0.6 -0.4 -0.2 0.2 0.4 0.6

-1.0

-0.5

0.5

1.0

ηp

σH

ζ
i

9 / 11



What about attractive modifications?

ä = −4πG
3 ρ

(
1 + ρ2

ρ2c

)
a (leads to only one physical root).

Conjugate momentum to a3: p = −β−1 sinh−1(2αH)

Canonical Hamiltonian: H = − 3a3

8πGα2 sinh2(βp/2) +Hm

(Links with brane-world scenarios, complexified connection)

ä = − 4πG
3 ρ

(
1 + ρ2

ρ2c

)
a (only one physical root)

p = −
1

4πG

31/4

5
√
2σ
χ
−1
e
− 1

3
sinh−1 χ

√
1− e2 sinh−1 χ

[
5 2F1

(
1

12
,
1

2
;
13

12
; e

2 sinh−1 χ
)

+ e
2
3

sinh−1 χ
2F1

(
5
12
, 1
2
; 17
12

; e2 sinh−1 χ
)]

No polymerization appears when gravity is attractive at high
curvature scales.
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Summary

Using simple assumptions, our procedure allows constructing
canonical phase space structure, Hamiltonian and action from
desired cosmological dynamics.

It seems that repulsive nature of gravity at high spacetime
curvature has links with polymerization. Polymerized phase
space appears explicitely for certain cases (including in
presence of spatial curvature and anisotropies (Work in progress with S K

Soni)). Generic resolution of strong singularities in these cases.

For modified gravity scenarios, which make gravity more
attractive at high curvature scales, no polymerization appears.
Problem of singularities worse in these scenarios.

Does singularity resolution implies a polymerized version of
gravity at high curvature scales, and naturally lead us towards
loop quantum gravity?
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