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Testing general relativity with gravitational waves

A century of experiments indicate gravity closely resembles GR [Will 1993]
[Turyshev 2008], [Will 2014],...

Gravitational waves provide the first
window into the highly-dynamical,
strong-field regime of gravity

Given the tight constraints on GR,
what deviations could emerge in this
new regime?
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Extracting a signal from the noise in a GW detector requires accurate
waveform models.

How can we accurately model the GW signal from such deviations?
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Extracting a signal from the noise in a GW detector requires accurate
waveform models.

How can we accurately model the GW signal from such deviations?
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Scalar-tensor theories of gravity

Scalar-tensor theories are amongst the most natural and well-studied
alternatives to GR. We consider theories with one massless scalar
[Damour, Esposito-Farèse 1992]

S =

∫
d4x

c3√−g
16πG

[
φR − ω(φ)

φ
gµν∇µφ∇νφ

]
+ c2

∑

A

∫
dτAmA(φ)

Violation of the SEP⇒variable mass & dipole radiation.

Certain couplings ω(φ) allow for novel behavior in the strong-field regime
while satisfying weak-field constraints [Damour, Esposito-Farèse 1993].
We consider theories whose scalar-to-matter coupling is characterized by

a(φ) =

√
1

3 + 2ω(φ)
=

√
B log φ

2

or equivalently, a(ϕDEF) =
BϕDEF

2
where φ = eBϕ

2
DEF/2
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Dynamical scalarization

Numerical relativity simulations uncovered dynamical scalarization in
neutron-star binaries [Barausse+ 2013], [Shibata+ 2014].

Binary system evolves as in GR until
late inspiral or merger

Scalar field rapidly grows by orders of
magnitude

Inspiral shortened by up to 30-60 GW
cycles (out of last 250)
[Taniguchi+ 2015]
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FIG. 1: The separation and the dominant mode of the ψ4 scalar
(encoding the effect of GWs) for a binary with gravitational masses
{1.58, 1.67}M⊙, and for different values of β.

is based on free-falling test masses, so to analyze the
detector’s response one needs to look at the Jordan frame
metric gE

µν/φ(ϕ), to which the matter fields ψ couple [cf.
eq. (2)]. Far from the source, in suitable coordinates
one has gE

µν ≈ ηµν + hµν and ϕ ≈ ϕ0 + δϕ, where hµν

and δϕ are small perturbations. If ϕ0 = 0, we have
φ = exp(−βϕ2) ≈ 1 − βδϕ2, and therefore gE

µν/φ(ϕ) ≈
ηµν +hµν at linear order. This means that the motion of
the detector’s test masses is only sensitive to the tensor
waves hµν in the limit ϕ0 → 0.

Still, although weakly coupled to a GW detector at
infinity, the scalar mode carries energy away from the
source [cf. eqs. (5) and (6)] and exerts a significant
backreaction on it, because the scalar fluxes appear at
1.5PN order, while the quadrupolar tensor fluxes of GR
appear at 2.5 PN. More precisely, for a quasicircular bi-
nary with masses m1 and m2, and scalar charges α1 and
α2 [with αi ≈

√
4π/Gϕi

1/mi, where ϕ1 is defined, as
above, by ϕ = ϕ0 + ϕ1/r + ...], the dipolar scalar emis-
sion is [13, 16, 18]

Ėdipole =
G

3c3

(
Geffm1m2

r2

)2

(α1 − α2)
2 . (10)

Here, Geff = G(1 + α1α2) is the effective gravitational
constant appearing in the Newtonian interaction between
the stars, i.e. the gravitational force gets modified by the
exchange of scalar gravitons and becomes [13]

F =
Geffm1m2

r2
. (11)

The quadrupole tensor emission is instead [13, 18]

Ėquadrupole =
32G

5c3

(
Geffm1m2

r2

)2 (v

c

)2

, (12)

FIG. 2: The scalar field ϕG1/2 (color code) and the NS surfaces
(solid black line) at t = {1.8, 3.1, 4.0, 5.3}ms for β/(4πG) = −4.5,
and the binary of Fig. 1.

where v = [Geff(m1 + m2)/r]1/2 is the relative velocity
of the two stars. Therefore, the dipolar scalar fluxes are
produced abundantly during the inspiral if the charges
α1 and α2 are different, and dominate over the tensor
quadrupole fluxes, which are suppressed by (v/c)2 rela-
tive to them.

Results and comparison to GR: Our simulations confirm
the qualitative features described above, but also high-
light a more intricate phenomenology. Specifically, in ST
theories with β/(4πG) ! −4.2, NS binaries merge at sig-
nificantly lower frequency than in GR, e.g. in Fig. 1 the
plunge starts already when the stars’ centers are ∼ 52
km apart, corresponding to an angular velocity Ω ∼ 1850
rad/s (i.e. a GW frequency f ∼ 586 Hz, within Advanced
LIGO/Virgo’s sensitivity bands), and results in the for-
mation of a rotating bar (whose long-lived GW signal is
seen in the lower panel). Remarkably, plunges starting so
early cannot be obtained in GR, because even with exotic
equations of state, NS radii are constrained to RNS ! 14
km [42], so the interaction between the two stars does
not trigger a plunge until a separation ∼ 2RNS ! 28
km. Clearly, because a NS binary spends a large part of
its inspiral within LIGO/Virgo’s sensitivity bands, these
early plunges will not produce a signal-to-noise ratio very
different from GR and will not jeopardize the source’s
detection. Given the magnitude of the differences high-
lighted in Fig. 1 and the fact that they appear well within
advanced detectors’ frequency windows, however, it ap-
pears likely that a suitable post-detection analysis (i.e.
at the parameter-estimation stage) will be able to high-
light them. (A more detailed analysis of this point goes
beyond the scope of this paper, and will be presented
elsewhere.)

The cause of these earlier mergers is not simply the
backreaction of the scalar fluxes (10) (absent in GR). In

Taken from [Barausse+ 2013]

Goal: Improve on previous models [Sampson+ 2014], [Palenzuela+ 2014]
with a self-consistent framework that incorporates dynamical scalarization
from first principles.
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Post-Newtonian approach

lim
|x|→∞

φ = φ0

m1(φ)

m2(φ)

Body Zone PN Region

Post-Newtonian prescription

Expand φ about φ0 and gµν about ηµν in powers of c−2.
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Dynamical scalarization falls outside of the PN framework

The mass of each body is expanded about the background φ0

mA(φ) = mA(φ0)
(
1 + C1(φ− φ0) + C2(φ− φ0)2 + · · ·

)

The coefficients in this expansion
increase dramatically at each order.

Instead, one should resum the expansion
of mA(φ) and its derivatives.
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[NS, Buonanno 2016]
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where this expansion should break down.
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Resumming the post-Newtonian expansion

lim
|x|→∞

φ = φ0

m1(φ)

m2(φ)γ1(τ1)

γ2(τ2)

Body Zone PN Region

The PN region is determined by

S =

∫
d4x

c3√−g
16πG

[
φR − ω(φ)

φ
gµν∇µφ∇νφ

]

+ c2
∑

A

∫
d4x

∫
dτAmA (φ) δ(4)

(
x − γA(τA)

)
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Resumming the post-Newtonian expansion

lim
|x|→∞

φ = φ0

γ1(τ1)

γ2(τ2)m1(ξ)

m2(ξ)

Body Zone PN Region

The PN region is determined by

S =

∫
d4x

c3√−g
16πG

[
φR − ω(φ)

φ
gµν∇µφ∇νφ

]

+ c2
∑

A

∫
d4x

∫
dτA

[
mA (ξ) + λA(τA) (φ− ξ)

]
δ(4)
(
x − γA(τA)

)
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Resumming the post-Newtonian expansion

S =

∫
d4x

c3√−g
16πG

[
φR − ω(φ)

φ
gµν∇µφ∇νφ

]

+ c2
∑

A

∫
d4x

∫
dτA

[
mA (ξ) + λA(τA) (φ− ξ)

]
δ(4)
(
x − γA(τA)

)

We solve the field equations by expanding φ and gµν about the background
but leave ξ unexpanded (and thus, also m(ξ) and its derivatives).

Earlier PN calculations can be used with slightly modified source terms.

The Lagrange multipliers λA yield a system of algebraic equations for ξ
that must be solved exactly (numerically).

[NS, Buonanno 2016]
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Equations of motion

Modifying the source terms and repeating the calculation of [Mirshekari,
Will 2013], we compute the equations of motion through next-to-leading
order (full expressions up to O

(
c−4
)

given in [NS, Buonanno 2016])

ai1 = −Gm2(ξ2) (1 + α1(ξ1)α2(ξ2))

φ0r2
ni + [NLO] +O

(
c−4
)

ai2 = (1
 2)

ξ1 = φ0 +
2Gµ0m2(ξ2)α2(ξ2)

φ0rc2
+ [NLO] +O

(
c−4
)

ξ2 = (1
 2)

where αA is the scalar charge, related to the derivative of mA

αA ∼
d logmA

d log ξ
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Testing the model against numerical relativity

We compute the scalar mass MS , a gauge
invariant measure of scalarization,

MS ≡ −
c2

8πG

∮

|x|→∞
δij∂iφdSj

and compare against quasi-equilibrium (QE)
configuration calculations from
[Taniguchi+ 2015].
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Progress towards a full waveform model

PN calculation

hGW = A(f )eψ(f )Waveform

df
dt = −F/dEdf

Orbital Evolution
(Circular Orbits)

EEnergy F Flux

hµν , φ, EOM

Resummed PN calculation

hGW = A(f )eψ(f )

df
dt = −F/dEdf

MS MADM F

hµν , φ, EOM

[Damour, Esposito-Farèse 1992], [Damour, Esposito-Farèse 1996], [Mirshekari, Will 2013]
[Damour, Esposito-Farèse 1992], [Lang 2014], [Lang 2015]
[Will 1994], [NS, Marsat, Buonanno 2016]
[NS, Buonanno 2016]
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Conclusions

Gravitational wave detectors allow us to probe the highly-dynamical,
strong-field regime of gravity.

Detecting deviations from GR requires accurate waveform models in
alternative theories of gravity.

Dynamical scalarization is a promising feature for which to search,
but occurs as the PN approximation breaks down.

We construct a perturbative model that incorporates dynamical
scalarization from first principles by straightforwardly resumming the
PN expansion.

Our model reproduces numerical relativity prediction of location and
magnitude of scalarization to . 10%; the ultimate goal is to produce
inspiral waveforms within this framework.
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Backup Slides
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Transformation between Jordan and Einstein frames

The class of scalar-tensor theories we consider can be rewritten in either
the Jordan frame or Einstein frame:

Jordan Frame

S =

∫
d4x

c3√−g
16πG

(
φR − ω(φ)

φ
gµν∇µφ∇νφ

)
+ Sm[gµν ,Ξ]

Einstein Frame

S =

∫
d4x

c3
√−g̃

16πG

(
R̃ − 2g̃µν∇µϕ̃∇νϕ̃

)
+ Sm

[
e−

∫
2dϕ̃/
√

3+2ω(ϕ̃)g̃µν ,Ξ
]

with the transformation

g̃µν ≡ φgµν , ϕ̃ ≡
∫

dφ

√
3 + 2ω(φ)

2φ
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Coupling in the Einstein frame

S =

∫
d4x

c3
√−g̃

16πG

[
R̃ − 2g̃µν∇µϕ̃∇νϕ̃

]
+ Sm

[
e−

∫
2dϕ̃/
√

3+2ω(ϕ̃)g̃µν ,Ξ
]

The scalar field is coupled to matter (Ξ) only through the metric, so as to
avoid introducing a “fifth force.” The coupling is characterized by

a = (3 + 2ω)−1/2

The most commonly considered couplings include

a(ϕ̃) φ(ϕ̃) ω(ϕ̃) Parameters GR Limit

1√
3 + 2ωBD

exp
(

2ϕ̃√
3+2ωBD

)
ωBD ωBD ωBD →∞

Bϕ̃

2
exp

(
Bϕ̃2

2

) 2

B2ϕ̃2
− 3

2
ϕ̃0, B ϕ̃0 → 0
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Spontaneous scalarization

S =

∫
d4x

c3
√−g̃

16πG

[
R̃ − 2g̃µν∇µϕ̃∇νϕ̃

]
+ Sm

[
e−

∫
2dϕ̃/
√

3+2ω(ϕ̃)g̃µν ,Ξ
]

For B > 0, the Z2 symmetry associated with ϕ̃→ −ϕ̃ can be
spontaneously broken in the relativistic regime.

The corresponding phase transition allows the theory to behave very
similarly to GR in the weak-field limit (satisfying current experimental
constraints), but still generate detectable non-GR phenomena in regions of
strong gravity.

These phenomena include spontaneous scalarization and dynamical
scalarization

Noah Sennett (UMD) GR21 (Columbia) July 13, 2016 4 / 9



Spontaneous scalarization

The dominant contribution to the energy of an isolated body is given by

Energy ≈
∫

d3x

[
1

2
(∂iϕ)2 + ρe−Bϕ

2/4

]
≈ mc2

(
ϕ2
c/2

Gm/Rc2
+ e−Bϕ

2
c/4

)

Sufficiently compact neutron stars can “scalarize,” [Damour &
Esposito-Farèse 1993] developing a non-trivial scalar charge (akin to
ferromagnetism below the Curie temperature).

9

estimate of its value, one can write

Energy ≈
∫ [

1

2
(∂iϕ)2 + ρ eβ0ϕ2/2

]
≈ mc2

(
ϕ2

c/2

Gm/Rc2
+ eβ0ϕ2

c/2

)
. (9)

When β0 < 0, this is the sum of a parabola and a Gaussian, and if the compactness

Gm/Rc2 is large enough, the function Energy(ϕc) has the shape of a Mexican hat,

see Fig. 2. The value ϕc = 0 now corresponds to a local maximum of the energy. It

is therefore energetically favorable for the star to create a nonvanishing scalar field

ϕc, and thereby a nonvanishing “scalar charge” a′(ϕc) = β0ϕc. This phenomenon

is analogous to the spontaneous magnetization of ferromagnets.

ϕc

Energysm
all m

/R (Sun)

critical m
/R

large m
/R

(neutron star)

0

α0 = 0

a(ϕ)

ϕ

β0 < 0 large slope ≈ scalar charge

Figure 2. Heuristic argument to explain the phenomenon of “spontaneous scalarization”. When
β0 < 0 and the compactness Gm/Rc2 of a body is large enough, it is energetically favorable to
create a local scalar field different from the background value. The body becomes thus strongly
coupled to the scalar field.

This heuristic argument has been verified by explicit numerical calculations,

taking into account the coupled differential equations of the metric and the scalar

field, and using various realistic equations of state to describe nuclear matter inside

a neutron star.14 The correct definition of the linear coupling strength between a

compact body A and the scalar field reads αA ≡ ∂ lnmA/∂ϕ0. It is plotted in Fig. 3

for the particular model β0 = −6. One finds that there exists indeed a “spontaneous

scalarization” above a critical mass (whose value decreases as −β0 grows). On the

other hand, if β0 > 0, both the above heuristic argument and the actual numerical

calculations show that |αA| < |α0|. In that case, one finds that neutron stars are

even less coupled to the scalar field than solar-system bodies.

The scalar charge αA enters the predictions of the theory in the same way as α0

in weak-field conditions. For instance, the effective gravitational constant between

[Esposito-Farèse 2004]
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Binary pulsar constraints (on spontaneous scalarization)

Scalarization drastically affects the evolution of binary systems. In
particular, scalarized systems emit significant dipole radiation, which
shortens their inspiral.
To date, timing measurements of binary
pulsars are consistent with GR (no dipole
radiation). The absence of observed
scalarized stars places a constraint on B.
Currently, this constraint is

B . 9− 10

depending on the NS equation of state.

8
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ϕ
0
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10-6

10-5

10-4

10-3

10-2

10-1

APR4
H4

FIG. 2. The allowed region in the B-j0 plane derived from the
constraint equation (57) setting the pulsar mass to 1.46M� for
PSR J1738+0333. The thick and thin solid curves show the result
for ar = 0.05 and 0.2, respectively. At B ⇡ 3.5 for the APR4 EOS
and B ⇡ 3.2 for the H4 EOS, the dipole radiation is suppressed be-
cause the relation Mj/MNS ⇡ Mj,WD/MWD is satisfied [12, 24].
Note that the constraint by the Cassini spacecraft [10] is written as
Bj2

0 . 5⇥10�5 and is stronger than that imposed by the binary pul-
sar for B . 5.

C. Constraints from pulsar binary systems

Pulsar timing observations of binary systems composed of
a neutron star and a white dwarf [24, 25] impose the strongest
constraints on B and j0 for a high value of B & 5. The con-
straints come primarily from the fact that the scalar-wave lu-
minosity has to be substantially smaller than the gravitational-
wave luminosity.

The neutron-star masses measured in Refs. [24, 25] are
MNS = 1.46+0.06

�0.05M� and MNS = 2.01 ± 0.04M� at one–s
error, respectively. As we shall find below, those observa-
tions imply that neutron stars with masses . 1.46M� and
& 2.01M� cannot be scalarized and that the possible values of
B, which depend on the EOS, are strongly limited. Although
Refs. [24, 25] has already constrained the DEF scalar-tensor
model, they did it employing one specific EOS for the nu-
clear matter [13]. As we have emphasized when discussing
Fig. 1, the constraint on B depends on the EOS. Therefore,
our analysis, although similar to and simpler than the one of
Refs. [24, 25], pays special attention to the dependence of the
constraints on the EOS.

In the following we work at leading order, that is we neglect
all higher-order, nonlinear corrections in the luminosity (see
Refs. [13, 19, 48] for more precise results). The gravitational-
wave luminosity from the tensor quadrupole moment in a bi-
nary system in circular orbits is

dE
dt

���
tensor quad

=
32
5

⇣µ
m

⌘2⇣m
a

⌘5
, (51)

where m, µ , and a are the total mass, the reduced mass
MWDMNS/m, and the orbital separation, respectively. Here-
after, we consider binaries composed of a neutron star of mass

MNS and a white dwarf of mass MWD. We derive the scalar-
wave luminosity from the scalar dipole moment integrating
Eq. (22). The relevant term in the wave zone is j ! ḋini/r
where ni is the unit spatial vector pointing along the radial
direction and di is the scalar dipole moment with magnitude

a
m

��MWDMj �MNSMj,WD
��= aµ

����
Mj

MNS
� Mj,WD

MWD

���� . (52)

Here, Mj and Mj,WD are the scalar charges of the neutron
star and white dwarfs, and ḋi = (d/dt)di. Substituting this
dipole-moment contribution into the stress-energy tensor of
the scalar field, we find that the scalar-wave luminosity from
the scalar dipole moment in a neutron star-white dwarf binary
in a circular orbit is

dE
dt

���
scalar dip

=
1
6

✓
2
B
� 1

2
j2

0

◆⇣µ
m

⌘2⇣m
a

⌘4

⇥
✓

Mj

MNS
� Mj,WD

MWD

◆2

. (53)

Assuming that Bj2
0 ⌧ 1, we write 2/B�j2

0 /2 ⇡ 2/B ⇡ w0j2
0

where w0 denotes the asymptotic value of w , which has to be
& 4⇥ 104 [10]. Thus in the following, we neglect the term
j2

0 /2 in Eq. (53). The ratio of the luminosities (51) and (53)
is

ar :=
(dE/dt)scalar dip

(dE/dt)tensor quad
=

5
96B

✓
Mj

MNS
� Mj,WD

MWD

◆2⇣ a
m

⌘
.

(54)

If observations constrain ar to a certain value, then, the fol-
lowing constraint on Mj holds

Mj <

 r
96Bar

5

⇣m
a

⌘1/2
+

Mj,WD

MWD

!
MNS, (55)

for Mj/MNS > Mj,WD/MWD and

Mj >

 
�
r

96Bar

5

⇣m
a

⌘1/2
+

Mj,WD

MWD

!
MNS, (56)

for Mj/MNS < Mj,WD/MWD. We notice that for large values
of B & 4, Mj/MNS > Mj,WD/MWD.

Currently, the strongest constraint on the DEF scalar-tensor
theory [11–13] is due to the observation of the white dwarf-
neutron star PSR J1738+0333 system [24]. For this system,
MNS = 1.46+0.06

�0.05M�, m = 1.65+0.07
�0.06M�, and the orbital pe-

riod is 0.35479 days with ⇡ 0 eccentricity. These data implyp
m/a = (1.19 ± 0.02)⇥ 10�3. For this binary system, the

decrease rate of the orbital period is measured with ⇡ 12% er-
ror and agrees with the prediction of general relativity within
⇠ 7% at the one–s level. This would imply that in this binary
system the scalar-wave luminosity cannot exceed ⇠ 5% of the
gravitational-wave luminosity, i.e., ar . 0.05. The same qual-
itative conclusion would apply for the PSR J0348+0432 bi-
nary [25], which contains a neutron star with mass ⇠ 2M�.

The numerical calculation shows that Mj,WD/MWD ⇡
Bj0/2 for low-mass white dwarfs with MWD . 0.2M�. This

Taken from [Shibata+ 2014]

No scalarized neutron stars have been observed, but the parameter space
of this theory is not entirely ruled out.
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Spontaneous scalarization is a non-perturbative phenomena

We describe a phenomenom as non-perturbative if it cannot be found at
any finite PN order. Spontaneous scalarization is an illustrative example.

The scalar charge of an isolated body
placed in a background φ0 can be
expanded in powers s = Gm

Rc2

Mϕ =
√
B log φ0

(
a0 + a1s + a2s

2 + · · ·
)

Truncated at any order in s, Mϕ → 0 as
φ0 → 1 (the GR limit).

However, beyond some critical
compactness, there exists a solution with
non-trivial Mϕ not captured by the PN
expansion.
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The scalar charge of an isolated body
placed in a background φ0 can be
expanded in powers s = Gm

Rc2

Mϕ =
√
B log φ0

(
a0 + a1s + a2s

2 + · · ·
)

Truncated at any order in s, Mϕ → 0 as
φ0 → 1 (the GR limit).

In order to accomodate spontaneous
scalarization, do not expand Mϕ.
Instead, solve for it numerically.
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Resummation schemes: “what” to resum

As described above, a resummation of the PN expansion of mA(φ) allows
one to model dynamical scalarization. There’s more than one way to do
this—consider a trivial (but relevant) choice of quantity to resum:

1 Jordan frame mass: mA(φ)⇒ mA(φ, ξ) = mA(ξ)

2 Einstein frame mass: m
(E)
A = mA(φ)/

√
φ⇒ mA(φ, ξ) = mA(ξ)

√
φ/ξ

Similarly, our resummation was implemented by matching the field ξ
defined in the body zone to φ defined in the PN region. More generically,
we could have instead matched ξ to any function F (φ). We consider two
natural choices:

1 ξ = φ⇒ F (φ) = φ

2 ξ = ϕDEF ⇒ F (φ) =
√

2 log φ/B

The choice of F determines how the scalar charge α(φ, ξ) is resummed.
Of the above options, the choice of F has a much greater impact on the
model than the choice of mA
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Field equations

We define an action for the two particles

Sm =
∑

A=1,2

∫
d4x

∫
dτAδ

(4)
(
x − γA(τA)

)
×
(
mA(φ, ξ) + λA(τA) (F (φ)− ξ)

)

and derive the field equations from the full action

Rµν −
1

2
Rgµν =

ω(φ)

φ2

(
∇µφ∇νφ−

1

2
gµνg

αβ∇αφ∇βφ
)

+
1

φ
(∇µ∇νφ− gµν�φ) +

8πG

φc4
Tµν

�φ =
1

3 + 2ω(φ)

(
8πG

c3
T − 16πG

c3
φ
DT

Dφ
− dω

dφ
gαβ∇αφ∇βφ

)

uσA∇σ (m(φ, ξ)uαA) = −Dm

Dφ
∂αφ

with D
Dφ ≡ ∂

∂φ + dF
dφ

∂
∂ξ
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