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Singularity Theorems

Blueprint of the generic singularity theorem (J. Senovilla):

Th. If g is C 2 then (i)–(iv) are incompatible, where

(i) Energy condition.

(ii) Causality condition.

(iii) Initial or boundary condition.

(iv) Causal completeness.

C 2 is too much to ask! Realistic models (stars, matched spacetimes)
involve jumps in matter variables ; g ∈ C 1,1.

Theorem allows (i)–(iv) for C 1,1.

But C 1,1 spacetimes are not singular (curvature bounded, unique
geodesics).

Below C 1,1: unbounded curvature, non-unique geodesics: singular.

Hence C 1,1 is the natural threshold for singularity theorems.
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The Theorems of Penrose and Hawking

Penrose, 1965

Let (M, g) be a spacetime such that

(i) Ric(X ,X ) ≥ 0 for every .

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a compact achronal spacelike submanifold of codimension
2 with past-pointing timelike mean curvature vector field.

Then M is future null geodesically incomplete.

Hawking, 1967

Let (M, g) be a spacetime such that

(i) Ric(X ,X ) ≥ 0 for every .

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging.

Then M is future time-like geodesically incomplete.
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The Theorems of Penrose and Hawking in C 1,1

Penrose, 1965

Let (M, g) be a C 1,1-spacetime such that

(i) Ric(X ,X ) ≥ 0 for every Lip-cont. local null vector field X .

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a compact achronal spacelike submanifold of codimension
2 with past-pointing timelike mean curvature vector field.

Then M is future null geodesically incomplete.

Hawking, 1967

Let (M, g) be a C 1,1-spacetime such that

(i) Ric(X ,X ) ≥ 0 for every smooth timelike local vector field X .

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging.

Then M is future time-like geodesically incomplete.
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Obstacles in the C1,1-case – Strategy of proof

Main problems:

No appropriate version of Calculus of Variations available (second
variation, maximizing curves, focal points, index form, . . . )

C2-causality theory rests on local equivalence with Minkowski space.
This requires good properties of exponential map.

I expp : Ũ → U homeomorphism.
I expp(I+(0) ∩ Ũ) = I+(p) ∩ U.
I Radial geodesics are locally longest curves.

Strategy:

expp is a bi-Lipschitz homeomorphism with good causal properties.

Employ regularization adapted to causal structure following
Chrusciel/Grant : ǧε ≺ g ≺ ĝε, ǧε, ĝε → g in C 1,

curvatures loc. unif. bounded.

Avoid Calculus of Variations.

Re-build causality theory for C1,1-metrics.
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The C1,1-proof

D+(S) ⊆ D+
ǧε(S):

S

p

D   (S)gεˆ

D (S)

J  (p)-

+

+

Limiting argument ⇒ for every p ∈ D+(S) there exists a g -geodesic
γ with L(γ) = d(S , p).

S compact ⇒ negative upper bound on θ(0) = lim θε(0), where θ
trace of the extrinsic curvature of S .

Regularize Ricci-curvature

Ricci-curvature bound on ǧε and Raychaudhury equation ⇒ D+(S)
relatively compact, otherwise ∃ focal points for ǧε too close to S .

Therefore, H+(S) ⊆ D+(S) compact.

Derive a contradiction as in the C∞-case.
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Therefore, H+(S) ⊆ D+(S) compact.

Derive a contradiction as in the C∞-case.

(GR 21 – Columbia University) 5 / 7



The C1,1-proof

D+(S) ⊆ D+
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Therefore, H+(S) ⊆ D+(S) compact.

Derive a contradiction as in the C∞-case.

(GR 21 – Columbia University) 5 / 7



The C1,1-proof

D+(S) ⊆ D+
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ǧε(S):

S

p

D   (S)gεˆ

D (S)

J  (p)-

+

+

Limiting argument ⇒ for every p ∈ D+(S) there exists a g -geodesic
γ with L(γ) = d(S , p).

S compact ⇒ negative upper bound on θ(0) = lim θε(0), where θ
trace of the extrinsic curvature of S .

Regularize Ricci-curvature
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Outlook

Related results, comparison geometry

Riemannian comparison results: Ricci, mean curvature, Laplace, . . .

Grant (2011): Null-cone comparison theorems

Grant/Treude (2013): Lorentzian volume comparison with model
spaces (warped products), new proof of Hawking’s theorem

Graf (2016): Comparison geometry proof of C 1,1-Hawking theorem.

Graf (2016): Rigidity results for singularity theorems.

Current research

Comparison approach to Penrose singularity theorem (Evolve trapped
surface along null geodesics, quantify area), should also give new
proof in C 1,1.

Long term goal: Hawking-Penrose singularity theorem in C 1,1: Will require
completely new methods.
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Chrusciel-Grant regularization of the metric

ǧ g ĝ

Locally, gε := g ∗ ρε, glued by partition
of unity subordinate to Ui b M.

Same way: construct time-like 1-form ω
s.t. |ω(X )| ≥ ci > 0 for all g -causal vf
X with ‖X‖h = 1.

ǧη,λ := gη + λω ⊗ ω
Adapt λ = λ(ε) and η = η(ε) locally
s.t. for ε small

g(X ,X ) ≤ 0 ∧ ‖X‖h = 1⇒ gη,λ(X ,X ) < 0

Glue w.r.t. x and ε to obtain Lorentzian
metric ǧε ≺ g . Back
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Glue w.r.t. x and ε to obtain Lorentzian
metric ǧε ≺ g . Back
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ǧ g ĝ
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Regularization of Ricci-curvature

Th. g a C1,1-metric, Ric(X ,X ) ≥ 0 for every C∞-VF X , K ⊂⊂ X . Then

∀C > 0 ∀δ > 0 ∀κ < 0 ∀0ε ∀X ∈ TM|K with ǧε(X ,X ) ≤ κ, ‖X‖h ≤ C :

Ricε(X ,X ) > −δ.

Proof.

ǧε − g ∗ ρε → 0 in C2 ; suffices to consider gε := g ∗ ρε.
Rjk = R i

jki = ∂x i Γ
i
kj − ∂xk Γi

ij + Γi
imΓm

kj − Γi
kmΓm

ij

Blue terms|ε converge uniformly.

For red terms use variant of Friedrich’s Lemma:

(RjkX
jX k) ∗ ρε − RεjkX

jX k → 0 uniformly

ρε ≥ 0⇒ (RjkX
jX k) ∗ ρε ≥ 0.

2 Back
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The Hawking-Penrose Singularity Theorem

Hawking and Penrose, 1967

For a causally complete C 2-spacetime, the following can’t all hold:

1 Every inextendible causal geodesic contains a pair of conjugate points,

2 M contains no closed timelike curves and

3 there is a future or past trapped achronal set S .

Corollary

M must be causally incomplete if Einstein’s equations hold and

1 M contains no closed timelike curves.

2 M satisfies an energy condition.

3 Generality: nontrivial curvature at some point of any causal geodesic.
4 M contains either

I a trapped surface
I some p s.t. convergence of all null geodesics changes sign in the past
I a compact spacelike hypersurface Back
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