#GR21

DENSITY PROFILES OF GALAXY CLUSTERS IN THE CFHT STRIPE 82 SURVEY FROM WEAK GRAVITATIONAL LENSING

Maria Elidaiana da Silva Pereira (CBPF/MCTI)

Marcelle Soares-Santos (Fermilab) / Martín Makler (CBPF/MCTI) / André Vitorelli (USP) / Jim Annis (Fermilab) / Huan Lin (Fermilab) / Leandro Beraldo (USP) / CS82 Collaboration

New York, July 14, 2016

OUTLINE

- INTRODUCTION AND MOTIVATION
 - MATTER DISTRIBUTION THROUGH WEAK LENSING
 - PRECISE MASS MEASUREMENTS
- OVERVIEW OF THE DATA
 - CS82 SURVEY AND DR7 SDSS STRIPE 82 COADD
 - LENS CATALOG FROM REDMAPPER
 - SOURCE CATALOG FROM LENSFIT
- WL MEASUREMENTS
 - AVERAGE TANGENTIAL PROFILES
- SUMMARY AND PERSPECTIVES

 ACDM model makes a number of predictions about the galaxy clusters

Dark matter distribution, NFW profile, halo mass function

From observations: difficult to measure the cluster mass

Physical assumptions, need of mass-observable relations

Weak gravitational lensing: well-suited for studying mass profile

Sensitive to all mass associated with the cluster, probe dark matter

The gravitational lensing effect: bending of the light by a matter distribution.

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}$$

$$\vec{\alpha}(\vec{\theta}) = \nabla_{\theta} \Psi(\vec{\theta})$$

$$\Psi(\vec{\theta}) = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \kappa(\vec{\theta'}) \ln |\vec{\theta} - \vec{\theta'}|$$

$$\kappa(\vec{\theta}) = \frac{1}{2} \nabla_{\theta} \cdot \alpha(\vec{\theta})$$

The gravitational lensing observables: shear, convergence and magnification.

Example of a circular source that transforms into ellipse under influence of shear and convergence (Narayan & Bartelmann, 1997).

$$\kappa(\vec{\theta}) = \frac{\Sigma(D_d \vec{\theta})}{\Sigma_{crit}}$$

$$\gamma_1 = \frac{1}{2}(\Psi_{,11} - \Psi_{,22})$$
 $\gamma_2 = \Psi_{,12}$

$$\mu = \frac{1}{(1-\kappa)^2 - |\gamma|^2}$$

The gravitational lensing regimes: strong and weak.

Strong lensing: strong distortions, multiple images and arcs. Image: G. Caminha.

MOTIVATION

Challenges:

Galaxy clusters detection → several cluster finders

Galaxy shapes measurements → seeing, optical effects

Accurate mass estimation → weak lensing systematics

Objectives:

Measure the weak lensing signal from CS82 galaxy clusters

Test the weak lensing systematics: miscentering, point mass, etc.

Estimate the mass and concentration

CFHT STRIPE 82 SURVEY

- Focus on weak lensing, 170 deg² on Stripe 82 region
- i-band (optical), i~23.5, mean seeing 0.6

CS82 footprint: 176 tiles, equatorial region, avoiding bright stars. Image: A. Leauthaud.

CFHT STRIPE 82 SURVEY

- Excellent image quality for the shape measurements of the faint sources
- Stripe 82 also is covered by different multiwavelenght surveys

CS82 footprint: 176 tiles, equatorial region, avoiding bright stars. Image: A. Leauthaud.

REDMAPPER LENS CATALOG

- red sequence Matched-filter Probabilistic Percolation (redMaPPer) - Rykoff et al., 2013
- The richness λ is the number of red sequence galaxies brighter than 0.2L* at the redshift of the cluster within a scaled aperture
- Cluster centering is done with a probabilistic algorithm (Pcen>0.9, well centering clusters)
- Richness values are corrected for the survey masked area
- CS82 redMaPPer clusters:
 - redshift range 0.1 < z < 0.7
 - \(\lambda > 20\)
 - Total of 838 clusters

LENSFIT SOURCE CATALOG

- Lensfit (Miller et al., 2007): Bayesian method to measure the shape of galaxies by a model-fitting
- Models: exponential and de Vaucouleurs
- PSF modelling: from the stars in the field, pixelized PSF model to polynomial fit in the image
- Distortion correction: from the astrometric calibration, relationship between pixel and celestial coordinates as a function of position across the field

Lensfit process overview: measure PSF → create a model
→ convolve with PSF and correct distortion → determine
the likelihood of the fit

LENSFIT SOURCE CATALOG

1 - Lensfit computes the posteriori likelihood to the ellipticities by:

LENSFIT SOURCE CATALOG

2 - Shear using the prior and the likelihood:

$$\langle \boldsymbol{e} \rangle = \frac{1}{N} \sum_{i} \int \boldsymbol{e} p_{i}(\boldsymbol{e}|\boldsymbol{y}_{i}) d\boldsymbol{e}$$

$$\langle e \rangle = \frac{1}{N} \sum_{i} \int e p_{i}(e|\mathbf{y}_{i}) de \left[\hat{g}_{\mu} \equiv \frac{\sum_{i}^{N} w_{i} \langle e_{\mu} \rangle_{i}}{\sum_{i}^{N} w_{i} \partial \langle e_{\mu} \rangle_{i} / \partial g_{\mu}} \right]$$

$$\frac{\partial \langle e_{\mu} \rangle}{\partial g_{\mu}} \simeq 1 - \left[\frac{\int (\langle e \rangle - e) \mathcal{L}(e) \frac{\partial \mathcal{P}}{\partial e_{\mu}} de}{\int \mathcal{P}(e) \mathcal{L}(e) de} \right]$$

3 - Lensfit catalog provides: RA, DEC, y1, y2, weights, m, etc.

Lensfit outputs + BPZ photo z's $\rightarrow \sim 4.400.000$ sources

WL MEASUREMENT THEORY

- y₁, y₂ to tangential and cross shear components:

$$\gamma_t = -\gamma_1 \cos(2\phi) - \gamma_2 \sin(2\phi)$$
 $\gamma_t = \gamma_1 \sin(2\phi) - \gamma_2 \cos(2\phi)$

- Average tangential shear, γ_t, in annulus of radius R:

$$\gamma_t(R) = \frac{\Delta \Sigma}{\Sigma_{crit}} \equiv \frac{\overline{\Sigma}(\langle R) - \langle \Sigma(R) \rangle}{\Sigma_{crit}}$$

$$\Sigma_{\rm crit} = \frac{c^2}{4\pi G} \frac{D_s}{D_l D_{ls}}$$

WL MEASUREMENTS IN PRACTICE

- Binning in z or λ and compute $\Delta\Sigma$ with xshear code (E. Sheldon, on Github)
 - Stacking the signal of the clusters in the sample

WL MEASUREMENTS IN PRACTICE

- The $\Delta\Sigma$ is computed, in the concentric rings, by:

$$\Delta\Sigma(R) = \frac{\sum_{ls} w_{ls} \gamma_t^{ls} \Sigma_{\text{crit}}}{\sum_{ls} w_{ls}}$$

where w is the weight for each source:

$$w_{ls} = w_n \Sigma_{\rm crit}^{-2}$$

- Binning of the the samples in redshift: low-z (0.2 to 0.4) and high-z (0.4 to 0.6)
- Cuts on CS82 masked catalog to get the Lensfit-sources
 - H0 = 67.8, Ω m = 0.307, clustercentric radius from 0.1h^-1 to 10h^-1 Mpc

WL SIGNAL FROM STACKING

High z sample

Low z sample

WL SIGNAL FROM STACKING

High z sample

Low z sample

- Comparison of the xshear results with an independent code

WL SIGNAL FROM STACKING

High z sample

Low z sample

- Comparison of the xshear results with an independent code

TESTING THE WL CODES

- Better way to test: simulations
- NFWsim (H. Lin): code to simulate the tangential shear according to a Navarro-Frenk-White (NFW) profile with mass M200 + gaussian noise
- NFWsim outputs: shear components (γ_1 , γ_2) and tangential and cross components of the shear (γ_t , γ_X)
- Testing: $(y_1, y_2) \rightarrow (y_t, y_x) \rightarrow (y_t, y_x) \times \Sigma_{crit} = \Delta \Sigma$

TESTING THE WL SIGNAL FROM THE CODES

Tangential shear

Cross shear

TESTING THE WL SIGNAL FROM THE CODES

 $\Delta\Sigma$ cross

ΔΣ tangential

SUMMARY AND PERSPECTIVES

- We measured the average shear profile of two samples of galaxy clusters in low (0.2 to 0.4) and high (0.4 to 0.6) redshift using the CS82 imaging data
- We tested our codes against a set of simulations: results are encouraging!
- Next steps:
 - Detailed study of systematic effects such as miscentering, photo-z uncertainties
 - Bayesian profile fitting to determine the mass vs.
 richness relation
 - Test of different profiles: Einasto, BMO, etc.

THANK YOU!

QUESTIONS?

#VoltaMCTI #SaveBrazilianDemocracy