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What is the gravitational-wave memory?
example: nonlinear memory from binary black-hole mergers

Gravitational-wave signal vs. time total signal
(oscillatory + memory)

oscillatory waves
(no memory)

The memory slowly builds up during
1 the inspiral, grows rapidly during the
merger, and saturates to its final value
§ during the ringdown.

3800 3900 /M 4000

The wave no longer returns to the zero-point of its oscillation.
This growing-offset is called the memory.



Why is this called “memory”?
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The linear and nonlinear memory:
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Linear memOry: (Braginskii, Grishchuck, Thorne, Zeldovich, Polnarev) J

= Arises from the non-oscillatory motion of a
00F

source, especially due to unbound masses. . £, /A0 MEmory)

h_(has memory) 1
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mass/neutrino ejection = o b 09T T
in supernovas/GRBs '
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N0n|lnear memory (Christodoulou, Blanchet, Damour)
= Arises from the GWs produced by GWs:

| >Té’%v —

OR* = —16m(—g)(T9% 4 T2 [h, B]) + O(R?)

=  “Unbound particles” are the individual “radiated gravitons”. [Thorne ‘92]

*  Produced by all sources of GWs.

= Allows us to probe one of the most nonlinear features of GR.



Previous work:

Previous nonlinear memory calculations (inspiralling binaries):
v OPN inspiral, circular, nonspinning: Wiseman & Will ’91

v" 3PN inspiral, circular, nonspinning: MF ’09a

v OPN inspiral, eccentric, nonspinning: MF ’11

v merger/ringdown, nonspinning, equal-mass: MF '09b, ‘10

v merger/ringdown, aligned-spins, equal-masses: Pollney & Reisswig ‘11
v’ crude detectability estimates: MF ‘09b, MF’11, Pollney & Reisswig '11

v’ estimates of recoil-induced memory and QNM Doppler shift: MF '09¢c

v’ pulsar timing studies/searches: Seto ‘09, van Haasteren & Levin ‘10,
Pshrikov et al’10, Cordes & Jenet ‘12, Madison, Cordes, Chatterjee ‘14,
Wang et al '15, Arzoumanian et al 15

[See also mathematical aspects of memory addressed at this conference: Garfinkle, Tolish.]



Motivation for this work:
Part I: spin corrections to inspiral memory waveform

= Memory builds up slowly through the inspiral + merger/ringdown.
Correct inspiral description is needed as initial condition to the NR

piece of the memory. (Extend previous work to spinning case.)

= Complete spinning PN waveform amplitude to 1.5PN order.

Part II: memory from merger/ringdown of nonspinning black holes
= Need accurate model of entire coalescence to model/detect memory.
= Nonlinear memory difficult to compute with NR simulations.

= Use non-memory modes from SXS waveform catalog + analytic formula
to generate the memory.

Part lll: detectability estimates

= Use simple model of nonlinear memory to estimate signal-to-noise
ratios for ground-based detectors.



Summary of calculations:

1. Waveform can be expanded in spin-weighted spherical harmonic modes:

hy —ihy =Y Y  Tum(Tr, R) —2Yin (0, @)

[=2 m=—I
2. The nonlinear memory modes are related to the GW energy flux [MF '09a]:
z - 2 TR dEGW
plmem) a9 Q)" (9

3. The energy flux is related to the oscillating (hon-memory) 4, modes:

dEcw R? R? : - )
dtdS) B 167‘(‘ <h2 h2 > 167'(' Z <hl1m1 hl2m2> —Zifllml —2Yl2m2

ll ,lg ,1101 ,1M 2

4. Compute time-derivative of 1, (v, L, S|, S,) [Arun et al. ‘09],
substitute eq. of motion & solutions at leading SO order [Blanchet et.al‘11],
simplify and integrate.

[For merger/ringdown, substitute non-memory modes from NR simulation,
numerically integrate, and match to analytic inspiral. ]



Spin-orbit corrections to inspiral memory:

Aligned-spin case: [ w/ Xinyi Guo]
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Spin correction maximized for maximally

0.06
spinning, aligned binaries.

0.05
Spin terms produce ~20% maximum
correction at Schwarzchild ISCO. - 0-04

& 0.03

Small-inclination angle case also computed <
analytically. (Depends on perpendicular e
spin components.) 0.01
Generic precessing case computed 0.00'

numerically.
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Merger/ringdown memory (nonspinning):

[w/ Goran Dojcinoski]
= Express m=0 memory

modes in terms of
oscillatory modes.

= Use h,;, from SXS catalog.

= Match to inspiral memory.
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Merger/ringdown memory (nonsplnnlng):
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Detectability of memory:

[w/ Emanuele Berti]

Use analytic model from MF ApJL ‘09 to <°

compute SNR for equal-mass case

(extension to other mass ratios via new

waveforms in progress).

MF AplJL’09 focused on detectability by
LISA. (SMBH memory easily seen to z=2.)

Also estimated aLIGO SNR of 8 for 100 M

binary at 20 Mpc.

Here we extend the analysis to ground-

based detectors...
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Detectability: aLIGO (preliminary)
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aLIGO memory SNR (angle-averaged vs. optimal)

001 T R [ see also Lasky et al 16 ]



Detectability: future ground-based (preliminary)
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Detectability: future ground-based (preliminary)
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= Good prospects for most sensitive 3™ generation detectors.

= For masses ~5 to 4000 solar masses, memory SNR ~O(1%) of inspiral SNR.



Summary & Conclusions:

* The nonlinear memory is a non-oscillatory correction to the GW
amplitude that arises from the GWs produced by GWs.

" We computed the effect of the spin-orbit interaction on the inspiral
portion of the memory. Spin contributes a maximum correction of
~20% during the inspiral.

" These analytic inspiral corrections are needed as input for numerical
relativity calculations of the memory effect.

* Also computed full memory signal (inspiral+merger+ringdown) for
nonspinning BH systems (needed for accurate detection estimates).

= Detectability estimates: not great for aLIGO; good for 37 gen.
ground-based detectors and LISA.

[ This work supported by NSF Grant No. PHY-1308527. ]



