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Diff inv. + the metric is the only field — GR

Departing from GR implies
almost always more fields and propagating
degrees of freedom
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Dark Energy models based on symmetries
which determine its mechanical and
thermodynamical properties
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EMT conservation <=> scalar field equations

Diff invariance of the action for the scalars is encoded
in their equations of motion
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o Spatial coordinates of the medium space

d”  Temporal coordinate of the medium space




operators invariant under internal rotations

b= Vdet B ™m=T(B") n=123 B = g’“’“”(?uCI)“(?VCI)b

9" 8,8°9,8° g*%9, 895 9"
X

wp, =Tr(W") n=1,23 W¥=pB%_

Lagrangian
coordinates

l

X =g"9,9°,0"

chvap
ut = Eape 0y P 0, P 05 P° ut 9,0 =0
6b\/—g H

Y = u"9,®"
Shift symmetry + rotational invariance

U(0®) — U(b, X,Y, T, wn)
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Ty =Ugu —2(Uy, 6% +2U,, B* 4+ 3U,, B* B®) 9,99, 9"
Deviation of B2 from §% measures solid’s strain status

Anisotropic stress is present

ab v a b
B = g 0,“0d




More internal symmetries

Four-dimensional media

Symmetries of the action LO scalar operators Type of medium
SO0(3), & ®1 o1+ fA, 9,f4=0 X,Y, Th, Un
d* — & + f2(dY) X, wy
®’ — dY + f(®°) Y, supersolids
dY - o' + f(d") Tns Wny Oapn
P o 02 4 fo(dY) & Y — 0 + f(BY) wy,
V,Diff: ®¢ — w2 (%), det|0¥?/08% =1 b)Y, X
®0 — oY + f(®) & V,Diff b, O,
®" - oY + f(®?) & V,Diff b, Y perfect fluid
dA o UA(DB), det|oV4/0dE| =1 bY perfect fluid with p+p =10

superfluids




v-diff + fluid clock reparametrization
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Perfect Fluids

v-diff + fluid clock reparametrization

ov“
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select perfect fluids: b,Y
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Fluid Lagrangians

Currents
JH = buH

J{Ll) - Uy ut

Jty = —2(=X)/2Ux V*

J# = bu*, Jt, = Uy u¥




v-diff + fluid clock reparametrization

ov“
0Pb

select perfect fluids: b,Y

O — W(DY),  det (

):1, a,b=1,2,3 ®" — d° 4 f(®°)

T = U —=bUp) gu + YUy —0Up) uy, uy

Fluid Lagrangians

Lagrangian || p | Currents
U(b) -U JH = buH
-U+YUy U J(“l)zUyu“
—U+2XUx U Jé) = -2(=X)Y2Ux YV

-U+YUy U-bUy | JH = bu", J(“I}=Uyu“

Restricting to just v-diff gives a superfluid  U(b, X,Y)




Laws of thermodynamical satisfied




Laws of thermodynamical satisfied

dp =T ds + pudn p+p=T s+ un




dp="1Tds+ pndn

Example: (b, V)
p:YUy—U p:U—bUb
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Example: (b, V)
p:YUy—U p:U—bUb
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dp="1Tds+ pndn

Example: (b, V)
p:YUy—U p:U—bUb

s=2>b uw=yY

TLZUY T:—Ub

In flat space dynamical stability is equivalent to
thermodynamical stability + NEC:

p+tp=0







Unitary Gauge: modified gravity




for a configuration such that det(@MCDA) #+ 0

. A _ A
the 4 scalars can be taken as local coordinates and 0, 9" =9,

the scalars are gauged away, all the dynamics is in the metric field
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in the unitary gauge diffs appear to be broken

Diff invariance is “restored” by the Stuckelberg fields &4

GR has 2 DoF realized in a minimal way (just the metric)
other theories have more DoF and more fields
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Juv = a’ (mu/ T hpu/)

expanding around flat space or FRW the medium’s action
produces rotational invariant mass terms for graviton

2

V—gU =t" h,, + T”‘ (m§ ki + 2m7 hoihos — 2m3 hoo hii + m3 hi; — m3 hij hij)




2

4

Massive gravity as medium

Juv = a’ (77w/ T hw/)

expanding around flat space or FRW the medium’s action
produces rotational invariant mass terms for graviton

M
V—gU =t"" hy,, + P (m§ ki + 2m3 hoihoi — 2m3 hoo hii + m3 hi; — m3 hij hij)

Media

Operators

DoF

perfect fluids

b

X

Y

b, Y

superfluids

b, X

solid

special supersolid

special supersolid

N DO e e W W




LO self-gravitating media Map Massive gravity
L(CAB, g,.,) Unitary gauge — L(huy, g*°)
Oro: X, Y, 7, Un «— Stiickelberg “trick” | SO(3) invariants of ADM’s N, N*, v;,

O () Stuckelberg fields

. Cheung-Creminelli-Fizpatrick-Kaplan-
Inflation EFT Senatore 2008

Einstein aether theory (low energy limit of Horava gravity)

Blas-Pujolas-Sibryakov 2010
Jacobson 2010




® deviation from GR+CC  new DoFs
® new DoFs interpreted astmedium’s excitations
* DE vs modified gravity: often a matter gauge choice

® DE mechanical and thermodynamical properties

determined by symmetries

® the presence of a medium — preferred frame

Lorentz violation is natural
® In progress:
- observable signatures vs mechanical

thermodynamical properties of DE
- stability around FLRWV
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Volume preserving diffs and time diffs selects fluids

ov?
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Volume preserving diffs and time diffs selects fluids

ov?
0Pb

O — U(P%), det (

):1, a,b=1,2,3

S = Mpl/d4x\/—gR+ /d4a:\/—gU(b, X,Y)
actually is a superfluid

T,uu — (U—bUb) gW—F(YUy —bUb) uuu,,—FZXUXVMVV
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Perfect Fluids Dynamics

VT, =0 encodes all




VYT, =0

encodes all

by using basic thermodynamics

T s

n, =N v,,

[ n

SH:SUM

dp = sdT
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by using basic thermodynamics
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VT, =0 encodes all

by using basic thermodynamics

n, =N v,, S, = SV,

p+p=T s+ un dp = sdl’

V'V T, =0 = T V%,+uVing =0

(53—%1}“1}0‘) VT =0 = (p+p)a,+ (0 +v,0%) Vap =0




is even possible to have mGR theories with 2 DoF

U=vV-XEw,)+A




U= U(Tn) + V=X E(wn)

is even possible to have mGR theories with 2 DoF

U=+vV-XEw,)+ A\




U= U(T,) + V-X E(wn)

in the unitary gauge it appears as a set of massive gravity theories
with 5 DoF, ghost free, no vDVZ discontinuity

is even possible to have mGR theories with 2 DoF

U=v-XE(w,)+ A




Y. =s5u,

Y=TFf(z2)
s=Uy(f—2f)
n=fUy
TEiY.=(p+p)us

s=Ux (uf' —2Tf)
n=-UxTf
Tfl/zxu = (p+p)Vy

b=sf (o)
p=—Usf
T=-U(f—f/o)

T =8 fuy




Thermodynamical Stability is equivalent to dynamical stability
+ null energy condition

For instance take U(b)  Increase of entropy gives: Uy, = U < 0

Quadratic action around flat space

Juv = Nuv

T =75 + ﬁéfr, 7r2 = o, ,

No ghost p+p >0 No gradient instabilities o




rotational invariant SGM dr — RO Hb R € SO(3)

operators: rotational inv. in medium space and spacetime scalars
to be used in the medium action

Operator Definition

cAB g"’ 0,%40,8%, A,B=0,1,2,3
Bab g"v9,9°9,9%, a,b=1,2,3
Zab Ca() CbU

X CUU
W ab Beb — zeb /X

b Vdet B

Y utd, dY

TT(B"-Z2), n=0,1,23
Tr (B"), n=1,23
Tr(W"), n=0,1,2,3
(X/Y)* (ya/Y?)?, aBeR
(X/YH)", aeR




