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�0     Temporal coordinate of the medium space

Geometrical Interpretation

Spatial coordinates of the medium space�a

Carter 1973, Carter, Langlois 1993  



operators invariant under internal rotations 

uµ @µ�
a = 0uµ = � ✏µ⌫↵�

6 b
p
�g

✏abc @⌫�
a @↵�

b @��
c

X = gµ⌫@µ�
0 @⌫�

0

Vµ = � @µ�0

p
�X

Y = uµ@µ�
0

Bab = gµ⌫@µ�
a@⌫�

b

U(@�) ! U(b,X, Y, ⌧n, wn)

Shift symmetry + rotational invariance

Lagrangian 
coordinates



Anisotropic stress is present

Solids
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Perfect Fluids

v-diff + fluid clock reparametrization

select perfect fluids: b, Y

Tµ⌫ = (U � b Ub) gµ⌫ + (Y UY � b Ub) uµ u⌫

Fluid Lagrangians

Restricting to just v-diff gives a superfluid U(b,X, Y )
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Laws of thermodynamical satisfied

Jµ = b uµ Yµ = Y uµ⇢ = Y UY � U p = U � b Ub

U(b, Y )Example:

second possibility

s = UY µ = �Ub

n = b T = Y

In flat space dynamical stability is equivalent to 
thermodynamical stability + NEC: 

⇢+ p � 0

Stability

d⇢ = T ds+ µdn ⇢+ p = T s+ µ n

first possibility

n = UY T = �Ub

s = b µ = Y
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�A(x) Stuckelberg fields

Similar treatment

Inflation EFT

Einstein aether theory (low energy limit of Horava gravity)

Cheung-Creminelli-Fizpatrick-Kaplan-
Senatore 2008

Blas-Pujolas-Sibryakov 2010
Jacobson 2010



Conclusions

• deviation from GR+CC      new DoFs

• new DoFs interpreted as medium’s excitations

• DE vs modified gravity: often a matter gauge choice

• DE mechanical and thermodynamical properties  
determined by symmetries

• the presence of a medium      preferred frame 
Lorentz violation is natural 

• In progress:                                                           
- observable signatures  vs mechanical 
thermodynamical properties of DE                           
- stability around FLRW
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actually is a superfluid

Tµ⌫ = (U � b Ub) gµ⌫ + (Y UY � b Ub) uµ u⌫ + 2X UX Vµ V⌫
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special super solid

in the unitary gauge it appears as a set of massive gravity theories 
with 5 DoF, ghost free, no vDVZ discontinuity

is even possible to have mGR theories with 2 DoF 





Thermodynamical Stability is equivalent to dynamical stability 
+ null energy condition

For instance take U(b) Increase of entropy gives:  Ubb = U 00  0

Quadratic action around flat space

gµ⌫ = ⌘µ⌫�a = �

a
i x

i + ⇡

a(x)

c2s = � Ubb

⇢+ p

No ghost ⇢+ p > 0 No gradient instabilities c2s > 0



Media and symmetries

rotational invariant SGM �a ! Rab �b Rab 2 SO(3)

operators: rotational inv. in medium space and spacetime scalars 
to be used in the medium action


