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Physical states are generally not stress tensor eigenstates     

stress tensor fluctuations

Effects of stress tensor fluctuations:

1) Force fluctuations on material bodies

2) Passive quantum fluctuations of spacetime geometry

Distinct from the active fluctuations from the 
dynamical degrees of freedom of gravity itself, 

but still a quantum gravity effect



Probability distribution for quantum stress 
tensor fluctuations

Need to average the operator over a finite 
spacetime region

Expect the vacuum probability distribution 
to have a lower negative  cutoff at the 

quantum inequality bound on expectation 
values in an arbitrary state - lowest 
eigenvalue of the averaged operator.

No upper cutoff, but a slowly falling tail which 
gives the probability of large positive fluctuations.



T = a normal ordered quadratic operator 
averaged in time by f� (t)

characteristic time scale⌧ =
Example: asymptotic probability distribution for 

Lorentzian sampled energy density of the
 EM field

P (x) � c0 x�2 e�a x1/3

c0 � a � 0.96x� 1

x = T ⌧
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Large positive fluctuations are more likely than 
one might expect, and eventually vacuum 

fluctuations dominate over thermal fluctuations.

C. Fewster, T. Roman & LF (2012)



f̂(�) = Fourier transform of f� (t)

The rate of decrease of         is crucial in 
determining the rate of decay of        .

f̂(�) = e�|�|�

f̂(�)

Consider

� = 1
� < 1

Lorentzian

a class of compactly 
supported sampling functions

C. Fewster & J. Louko,
S. Johnson

⌧ = 1 units

More general sampling functions

P (x)

Switch-on behavior as              :t� 0+

⇥ =
�

1� �f(t) � D t�µe�w t��



These compactly supported functions are infinitely 
differentiable, non-negative functions which are strictly 

zero outside of a finite interval.

If a measurement is to begin at a finite time in the past 
and end at a finite time in the future, these seems to be 

better choices than analytic functions, such as the 
Lorentzian or Gaussian, which have infinite tails.

Asymptotic form for the probability distribution:

P (x) � c0 xb e�axc

c =
�

3
where

Implications:
  1) The form of the switching function is very important.

2) Switching in a finite time interval can produce large 
stress tensor fluctuations.



Now consider averaging in space as well as time.

T =

Z
dt d

3
x f(t) g(x) : Ttt(x, t) :

Let           be a sampling function in space and write 
the space and time averaged operator as, e.g.,
g(x)

g(x) = g(|x|)Assume that                        has the same functional form 
as         , but with characteristic width           .f(t) s < ⌧

C. Fewster  & LF (2016)

This leads to a transition in the rate of decrease of the tail 
of the probability distribution, P(x), at some point x ⇡ xc



1 ⌧ x < xc P (x) ⇡ c0 x
b e�a x

↵/3
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0
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0
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xc ⇡
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⌧

s

⌘3

where

Thus, if                     , the worldline form holds for a finite 
range before transitioning to a somewhat more rapid fall off, 

but still slower than an exponential if 

⌧ � s > 0

worldline case

� < 1



Possible physical effects of large fluctuations:

  1) Large Ricci tensor fluctuations and hence large 
focussing fluctuations for timeline geodesics.  The world 
tube of the geodesics could define the space and time 

sampling.

2) Enhanced barrier penetration rates by quantum 
particles. Large radiation pressure fluctuations can 

sometimes push particles over the barrier more quickly 
than they tunnel through the barrier. The shape of the 

barrier can define a sampling function.
H.  Huang and  LF (2016)



Summary
1) The probability distribution for stress tensor fluctuations 

requires averaging at least in time.

2) The distributions fall slower than exponentially, leading 
to the possible dominance of vacuum fluctuations over 

other effects.

3) Measurements in a finite time interval lead to especially 
slow fall off, but are sensitive to the sampling function

5) Possibility of observable effects of large vacuum 
fluctuations, such as in quantum barrier penetration?

4) Spatial averaging cause more rapid fall off, but can still 
be slower than exponential.


