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16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.

Constraints on Inflation model

arXiv:1502.02114
Planck 2015 results. XX



Question

Can we modify only tensor modes  
  without changing the scalar sector?



Question

Can we modify only tensor modes  
  without changing the scalar sector?

Yes, we can 
  with higher curvature corrections
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Construction of theories
Theories we want have the properties as follows:

・No ghost degrees of freedom

・Changing the dynamics of tensor perturbations 
  while the scalar perturbations is left unchanged 
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Construction of theories
ADM decomposition
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Cosmological perturbations
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Combinations for which the scalar variables are 
canceled out 
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Construction of Lagrangian
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Tensor amplitudes 
in      and      modelL1 L2
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L1 model
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L2 model
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L2 model
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Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).
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Summary
• We construct two possible theories which 
change only the dynamics of tensor 
perturbations without changing scalar sector. 

• One of the theories,     , can decrease the 
tensor amplitude up to 65%. 

• We can put some inflation models which are 
out of the observational constraints into the 
2σ contour with this suppression effect.
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Blue dashed line: analytic
Red points: numerical



Tensor to scalar ratio r = 16✏⌅1

Tensor tilt nT := d lnPT /d ln k
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