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Schwarzschild and Reissner-Nordstrom

2M 2M
ds? = —(1 — ==)dt? + (1 — ==)"1dr? + r?d6? + r?sin® 0d¢> (1)
r r
rs =2M Tu =kr/2T Ty =1/87M (2)
2M 2 2M 2
ds? = —(1- == + %)dt2 -2 %)*1dr2 + r2d6? + rsin? 0d¢? 3)

he electromagnetic four potential is given by
AY = <7,0,0,0> (4)
P

The event horizons are

re =M%/ M? - g? (5)
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Kerr-Newman black hole

The Kerr-Newman geometry in Boyer and Lindquist coordinates has the form

2 A 2 2 sin® 0 2 2 2 p? 2 2 102
ds* = ——[dt — asin® 0d¢]* + ——[(r* + a°)d¢ — adl] +Zdr + p°do (6)
P
where

A = r?-2Mr+q*+ 2%

p2 = r? 4 2% cos? 0,

. J
= o

where J is the angular momentum of the black hole. The electromagnetic vector potential can be
written as

A= (¢0 — wd>3)dt + ®3do,
with

2 2
L a) o
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P> P

P =
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This black hole has two horizons given by
r272Mr+q2+32 =0.

Its solutions are
r+ =M+ /M2 - g% — 22 (7)

which are the expressions for the location of inner and outer horizons. Hawking temperature is

M2 _ 22 _ g2

: 8
2r (2 + (M + /M? =37 — 7)?) ®
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Melvin Universe

The one-parameter static solution of the coupled Einstein—Maxwell system is given by the metric

1 1

ds® = (1+ 3 B%p*)*(—dt® + dp” + dz%) + (1 + ; B*p*) *p?de’ (9)
with t, z € (—o0, +00), p € [0,00), ¢ € [0,27). The electromagnetic field can be described by
the Maxwell tensor ]

F = e ¥ B(dz A dt) (10)

where 9 is real parameter of duality rotation. In particular, for ¢ = 0, the Maxwell tensor is
F = Bdz A dt which describes an electric field pointing along the z-direction, whereas for
) = /2 one obtains F = B(1+ 1/4B%p?)~2pdp A d¢, which represents a purely magnetic field
oriented along the z-direction.
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Harrison’s transformation and Ersnt’s technique

In 1976, F. J. Ernst using Harrison transformation presented a procedure which was used for
transforming asymptotically flat axially symmetric solutions of the coupled Einstein-Maxwell
equations into solution resembling Melvin's magnetic universe. He used this technique for the
removal of the nodal singularity of the C-metric and studied the Schwazschild,
Reissner-Nordstrom and Kerr black holes in Melvin universe.
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Schwarzschild black hole in Melvin universe

The Harrison transformations can be used to magnetize the Schwarzschild black hole.
The line element becomes

ds? = (1+ %BQR sin? 0)2[—(1 — g)dtj + ﬁ + r2d6? (11)
+(1+ %B2r2 sin20)~2r%sin? 0d¢? (12)
In this case the magnetic field components are given by
H = A2Bcosf (13)
Hy = —-A"2B(1- @)1/2 sin 0 (14)
A = 1+B¢f%B25:1+%BZr25in29, (15)
(16)

Note that if M = 0 the above metric becomes the Melvin's magnetic universe, while for M # 0
there is an event horizon at r = 2M and the angular component of magnetic field vanishes at the
event horizon. Further, the metric has singularity at r = 0, as in case of Schwarzschild metric.
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Reissner-Nordstrom black hole in Melvin universe

The Reissner-Nordstrom black hole in Melvin universe is

2M 2 2M 2
ds? = (A?[—(1— 22+ Tyae + (1 - 22 + L)~ 1dr? 4 r2de?] (17)
r r2 r r2
+(N) "2 sin2 0(dp — w' dt)? (18)
where
1 2 1 2.2 - 2 2 2 .
A:1+B¢—ZB :1+ZB (rsin® 0 + g~ cos” 0) — iBq cos 0, (19)

(20)

If g = 0 then this metric reduces to the Schwarzschild black hole in Melvin universe, and if
B = 0, then this becomes Reissner-Nordstrém.
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The components of the electric and magnetic fields from the electromagnetic potential ® are
Hy + iEr = N2[i(5){1 — 1B%(~sin” 0 + ¢ cos? 0) } (21)
r
q?
+B(1 - %qucosG)(l — =) cosf], (22)
r

and
2M

1 2
Ho + i€y = —BIAP (1~ Jiq” cos0)(1 - + L)V2sine.
r

Khalid Saifullah Magnetized Black Holes GR21, Columbia University, NYC 9 /31



Magnetized Kerr-Newman black hole

The magnetized Kerr-Newman black hole of mass M, angular momentum per unit mass a,
carrying an electric charge q, embedded in a uniform background magnetic field B is

dr? Y sin2 6
ds? = H[—fdt?> + R?*(— + d6? d¢ — wdt)? 23
s [ +(A+ )]+HR2(¢w), (23)
where

R? = r?+a%cos?h, (24)
A = (rP+3%)—2Mr+ ¢ (25)
Y = (rP+2*)? - aPAsin?0, (26)

R2A
f = —, 27
> (27)

H(l)B + H(Q) B2 + H(3)B3 + H(4) B*

H = 1+ = ,

(28)
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with
Hay = 2agr sin® @ — 2p(r? + a°) cos 6,
1 3
Ha = 5[(r2 + 32)2 — a?Assin? 0] sin2 0 + §q2(a2 + r? cos? 0),
A 1
Hz = - q«23 [F3(3 — cos? 0) cos? 6 + a*(1 + cos? 0)] + Ep(r4 — a*)sin? 0 cos 6
r
a 2 2 20 2 1
+qqa[(2r * 32 e pa®Asin? 0 cost — §p62(r2 +a?)cos’ 0
,
n aq(r? + a?)?(1 + cos? 9)
2r ’
1 1
Hay = R(r2 + a%)?R?sin* 0 + ZI\/I232[r2(cos2 0 — 3)% cos? 6 + a*(1 + cos? 0)?]

1 1

—|—ZM32r(r2 +a%)sin® 6 + Rﬁ"[r2 cos? 6 + a%(1 + sin? )] cos® 6
1 1

+Z Ma?r(r? + a®)sin® 6 + ZMaZEzr(cos2 6 — 5)sin 0 cos 0

1
+§§2(r2 + a2)(r? + a° + a®sin® 0) sin? 0 cos? 6.
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Here
T =q+p,
and )
w= E[(2Mr - Ez)a +wq)B + w(2)B2 + w(3) B3+ w(4)B4], (29)
with
wa = —2qr(r2 + 32) + 2apA cos 0,
3
wey = —Eaﬁz(r2 +a? + Acos?9),
1 1
wEy = 4qM2a%r + Eap64 cos® 0 + Eqr(r2 + a%)[r? — a® + (r? + 3a%) cos? 4]
1
+§ap(r2 + a%)[3r2 + 2% — (r? — 2%) cos? 0] cos O — aMG?(2aq + pr cos® 6)
1
—apMr[2R? + (r? + a%) sin? 0] cos 0 + Eapﬁz [3r? 4+ a% + 24 cos? 0] cos 0
1
+§qa2r[(r2 + 3a%) cos? 6 — 2% + gM[r* — a* + r2(r? + 3a°%)sin? 4],
1 1
way = 533 M3r(3 + cos* §) — §a§4[r2(2 +sin2 0) cos? 6 4 a%(1 + cos® )]

1
+Raﬁ2(r2 + a?)[r?(1 — 6 cos? 6 4 3cos* §) — a®(a + cos* 9)]

1 1 1
—Za3l\/lzﬁ2(3 + cos* ) — Eaﬁ6 cos* 6 + ZaM2[r4(3 — 6cos? 0 + 3cos* )

. 1
+2a°r?(3sin? 6 — 2 cos* ) — a*(1 + cos* )] + ZaMgG*F cos* ©
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The electromagnetic vector potential is

A= (O — wb3)dt + d3dg, (30)
where L )
o +olVB + 082 + 0l B3
q>0 - ) (31)
43
with
d)go) = 4[—qr(r® + a%) + apAcosb,
d>(()1) = —6362(r2 + a2 + A cos? 0),
¢82) = =3q[(r+ 2M)a4 — (r2 + 4Mr + A cos? 9)r3 + 32(262(r +2M) — 6Mr?
—8M?r — 3rA cos® 0)] + 3pA[3ar® 4 a° + a(a® + G* — r?) cos? 0] cos 6,
1
o8 = _Za[aatM? 4+ 1222 M2 + 222G + 2a*Mr — 2422 M3r + 422 MPr
0 2

—242°M?r? — 42°Mr® — G r* — 6Mr® — 6rA{2M(r? + a%) — G°r} cos? 0
+a*g% — 12M2r* + A(G* — 3G°r% + a2(4M? + G — 6Mr)) cos* 0],
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and
b3 = of + “’gl)RjH“’gz) + o ’ (32)
with
dDgo) = agrsin?0 — p(r2 + 32) cos 6,
¢51) = %[Z sin? 0 + 3G%(a? + r? cos? 0)],
CDE;Q) = %aqr(r2 + a%)sin* 0 — %p(r2 + a%)? sin @ cos 0 + 3a%pMr sin® 0 cos 0
+gaqm[r2(3 — cos? 6) cos? 0 + a*(1 + cos® §)] — %aqﬁerin2 6 cos® 6
7§pﬁ2[(r2 — a%) cos? 0 + 2a%] cos 6,
dDg?’) = %ﬁ2(r2 +a2)[r? + a® 4 a*sin? § cos® 0] — 23262 Mr(5 — cos? 6) sin?  cos® §

1 1
+§a2M2[r2(3 — cos?0)? cos? 0 + a?(1 + cos? 0)?] + EaZI\/Ir(r2 +a%)sin® 0

1 1
§R2(r2 + a%)?sin*0 + §§4[r2 cos? 0 + a?(2 — cos? 0)?] cos? 6.
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Quantum tunneling of charged scalar particles

We discuss quantum tunneling of charged scalar particles from event horizon of the magnetized
Kerr-Newman black hole using Hamilton Jacobi method which is a semi-classical approach.
First we write the metric in the form

Zs;—r; Ouw? Zsm 6 ¢ _2):5’1In ewdtdd) (33)

Using new functions C (r,0), g (r,0), D(r,0), K(r,0) and G (r,0) this becomes

HR?2
ds® = —(fH — )dt? + A ——dr? + HR?*d#? +

ds?> = —C (r,0) dt* + ( 9)+D(r,9)d02+K(r,@)d¢2—26(r,0)dtd¢, (34)
g r’
P2 2
Clr0) = fH- ¥ sin® fw 7
HR?
A
0) = =
g(r,0) RE
D(r,0) = HR?
¥ sin?0
K(r,0) =
(r’ ) HR2 b
Y sin? Qw
G(r,f) = ———.
(r,6) HR?
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The event horizons of the magnetized Kerr-Newman black hole is obtained from

A

(grr)71 =g(r,0)= HR2'

The outer and inner horizons corresponding to this black hole denoted by "r+" are given by
r+ =M=E\/M2—-22—q2—p2 (35)
The angular velocity at black hole horizon is

_ G (r+, 9)
O = 0y’ (30)

Using the values of G (r4,0) and K (r+, 6) this becomes

Qy = w(ry, 0). (37)

Khalid Saifullah Magnetized Black Holes GR21, Columbia University, NYC 16 / 31



We define new function

G2(r,0)
F(r,0)=—(g")'=C(r,0)+ ——7. 38
()=~ = C.0 + 5 g (38)
Using the value of C(r,0), G (r,0) and K (r,0) we will get

F(r,0) = Hf. (39)

Now we shall solve the Klein-Gordon equation to study the quantum tunneling of charged scalar
particles from event horizons of magnetized Kerr-Newman black hole. The Klein-Gordon equation

for scalar field ¢ is ) ) 5
ies ies m;
—A)(05 — —Ag)d — =
 Ae)(95 — = Ap) 2
where o, 8 =1, 2, 3, 4 corresponds to t, r, 0, ¢ respectively, es is the charge, ms is its mass,
g%P is the inverse of the metric tensor and A, is the vector potential which is given by Eq. (30).

go‘ﬁ(aa — ® =0, (40)
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Applying the Wentzel-Kramen-Brillouin (WKB) approximation and assuming the following ansatz

O(t,1,0,6) = ol 1(t,7,0,6) + h(t,1.0,6) + O], (41)

where [ is the action.
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After simplifying we get

(at—"’iA Po = exp(§/+h)[(iat/+at/1)2+(iatt/+att/1)—%atAt
e A
~B Ao+ o) — A A + o) + (SRR @a2)
h " h
(0, —EA Yo = exp(rl—i-ll)[( a,/+a,/1)2 (har,/+a,,/1) 8,A,
A,
_’EA( arl—&-d,ll)—?A( a,/+a,/1)+(’es 2, (43)
ies 5 B i i 5 i ies
(O — —-A0)"® = exp(]+ h)[(;06] + 0ph)" + (000! + Fpoh) — —=0 A
. . . -
_’%Ag( 001+ Oph) — %Ag(éa(,/Jrag/l)Jr(’esT")ﬂ, (44)
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ies 5 i i 2 i ies
Op — —Ayp)® = —+ I — Ot + Ol =0yl + Opl) — —O:A
(@ = —-A¢) exp( 1+ W)[(5- 0l + 0ch)” + (5. 0p1 + 0 h) — —=0cAg
ies i ies i . iesAg o
——Ap(=04l + 0 1) — —Ae(=0p1 + Oy — )], 45
Aw(10p1 +0ph) — —=Ar(0pl + O0ph) + (— )7, (45)
and
ies ies i i i
(0r — ?At)(ad, - ?A¢)¢ = exp(%l + Il)[(ﬁé’tl + Btll)(ﬁaqbl + 0sh)

i ies i
— Ol + Orp ) — — Ay (=0¢1 + O: 1
+(h el + O 1) - ¢(h el + O¢h)

ies ies
B, W
p OAs — AL

i

Ogl + Dph) + (T AcAg]. (46)
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The above equation can also written as

g°P(Bal — esA,) (95! — esAg) + m? =0,

(47)

which after using the values of g®# where o, 8 =1, 2, 3, 4, and simplification reduces to the

following equation

2H(r,0) (Oe] — esAr)?

&g(r,0)(8,1)* — W(W — &A)(0g] — esAg) — TFne)
(O] — esAr)? C(r,0) (0g1)? _

TR TRk ! TS gy T =0

For the calculation of tunneling probability consider an ansatz of the form
| = —tEs + ¢Js + W(r70)7

where Es and Js are energy and angular momentum of scalar particles.
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For fixed value of § = 6y = 0, we have
I = —tEs + ¢Js + S (r) + © (60). (50)
Using these in Eq. (48) we have

2H(r, 6p)
F(r,60)K(r,060)

+g(r,60)(S ()

C(r,00)

Es sAr)(Js — esA —_—
(Es + esAe)(Js —e ¢)+F(r,00)K(r,0o)

(Js — 65A¢)2

2 (Es + esAt)2 2
S S e 2 =0. 51
F(r.60) (51)
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Using Taylor's theorem we obtain

2(r —rp)(ry — )H(f+)R2(f+)

F(r,00) = (r—ry)F(re,60) = (s 00) (52)

I TR T o1 (53
T

Qy = %=w(f+,9o)- (54)

Since the above equation is quadratic in terms of S(r), so we have two solutions, one solution
corresponds to scalar particles moving away from the black hole and the other solution
corresponds to particles moving towards the black hole. Thus

r2 82 r
<0+ [ 30 e 5%
s NI LA e [Tl
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Integrating the above equation using residue theory we will get

(Es — Qpds — es®o(r4,60)) (r_%_ + a?)

™
ImS; = — s 56
moy 5 (rs — M) (56)
and ) )
ImS. — 7E(ES_QHJ$_ES¢O("+190)) (r++a ) (57)
2 (I‘+ — M)
We note that
ImS; = —ImS_. (58)
The tunneling probabilities of particles in each direction are
Pout = exp[—2Iml] = exp [-2 (ImS+ + ImO)], (59)
Pi, = exp[—2Iml] = exp [-2 (ImS_ + Im©O)]. (60)
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Thus the resulting tunneling probability I'(,,4) of a particle from inside to outside the horizon of
magnetized Kerr-Newman black hole is

Pout _ exp[—2(ImS; 4 ImO)]

r =
(mag) X o= = o [—2(ImS_ + Im®)]’
or
r(mag) = e&xp [72 (Im5+ —ImS_ )] : (61)
[ (mag) = €xp [-4ImSL], (62)

which after using Eq. (56) the tunneling probability of scalar particle becomes

—27 (rf_ + 32)

(ry — M) (Es — Quds — esPo(re,00)) | - (63)

r(mag) = exp

Note that the tunneling probability depends upon the mass M, angular momentum per unit mass
a, the electric charge g of the black hole, as well as charge es, the energy Es, and the angular
momentum Js of the scalar particles and the background magnetic field B.
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In the absence of magnetic field i.e. for B =0

The tunneling probability of scalar particle from the event horizon of magnetized Kerr-Newman
black hole given by Eq. (35), in the absence of magnetic field i.e. for B = 0, should give us the
tunneling probability of Kerr-Newman black hole. Under this condition Egs. (31) imply

o (r160)

®o(ry,00) = L0 64
o(r+. 6o) 4% (r4,00) (64)

or ) )

—4qri(ry + a°%) —qr+
bo(ry,00) = = , 65
(I’+ 0) 4(,’& +32)2 (ri+32) ( )
so that Egs. (35) yields
) 2 + 2
I =exp M Es — Quds — % ) (66)
(re = M) (rf +2%)

which is the tunneling probability of Kerr-Newman black hole as given in the literature [?].
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|
Weak magnetic field

If we consider the situation where the magnetic field is weak i.e. B" =0 for n > 2, Eq. (31)
becomes

¢(()0)(f+7 o) + B¢gl)(f+7 6o)

o ,00) = 67
olr+ o) 4% (ry,00) (67)
Or
(4gry + 6Bag?)

o} ) = ———5— " 68
o(r+,60) 4(“2r + 22 (68)

So the tunneling probability in the weak magnetic field is obtained as

—2m (r2 + 32) esqry 37Bag?

[ (mag) = €xp | ——F——2 | Es — Quds — ———— | | ex (7) 69
(mse) "{ (M) w2y )| P\ (59)
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Using Eq. (66) we obtain

r =2
(mag) = exp ( 37rBaq ) 7 (70)
r (I’+ - M)
or
r >
(mag) _ exp _3nBag . (71)
r /MZ _ 32 _ 62

where G2 = g2 + p2. The above equation shows that the tunneling probability of particles from
the event horizon of magnetized Kerr-Newman black hole is greater than that in the absence of
the magnetic field.
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Magnetized Reissner-Nordstrom black hole

The tunneling probability of particles from magnetized Reissner-Nordsstrom black hole can be
obtained from the tunneling probability for magnetized Kerr-Newman black hole by setting a = 0,
p =0. In this case ry = M + /M2 — g2 and Qy = 0. Thus from Eq. (35) we get

2

r
r = ) T [E — es® .0 , 72
(mag) = €XP 7rr+ M [ s — € 0(r+ 0)] ( )

|a=0,p=0
and from Eq. (31)

o (r1,00) + BOS(ry,00) + B0 (r, 60) + B30 (14, 6)

o(r+,600)1a=0 = 2% (r1.0) , (73)

with
d>§)0)(r+790) = _4qri7¢gl)(r+790) = 07
oD (re,00) = 3q[r3 (2 + 4Mry) + 6Mr2 + 8M?r.], &5 (r+, ) = 0.
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Thus the tunneling probability from magnetized Reissner-Nordstréom black hole is

2
r
+M[Es_

F(mag) = exp —27Tr

es {74qri +3gB? (ri(nzr +4Mry) +6Mr2 + 8M2r+)}.

(74)

In this case the Hawking temperature becomes
/M2 _ g2
Ty = S (75)
2 (M T /ME = q2)

The tunneling probability and temperature for Schwarzschild black hole can be recovered by
setting es = 0 in Eq. (74) and Eq. (75) respectively.
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Hawking temperature

The imaginary part of the action for the classically forbidden process is related to the Boltzmann
factor for emission and the Hawking temperature. From (63) with I = exp[—BE], where
B8 =1/ Ty we find that the Hawking temperature is given by

(rv — M)
ThH= ———"F. 5.1
= on (r2 + 2?) (5-1)
Using the value of ry
M2 — 22 _ g2
27 (32 +(M+ /M2 — 22— q2)2) 7

T (5.2)

We note that this temperature is the same as of the unmagnetized Kerr-Newman black hole which
shows that background magnetic field does not effect the Hawking temperature of black hole.
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