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Introduction

Context

Standard cosmology relies (mostly) on distances measured along our

lightcone.

I Some sources are extended: CMB, BAO;

I Some are ’point’ sources (narrow light beam): Supernovæ.

I A simple question: Can we describe all these observations with the

same model?

Well, yes; mostly: Concordance cosmology.

I But for SN, fluid approx. along line-of-sight might be misguided

[Clarkson et al, 2011].

I Small corrections may be important [Fleury et al, 2013] for precision

cosmology.
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Introduction

Aim

Here we propose a new approach to this problem:

I Describe propagation light from point sources using stochastic

description for lenses along the line of sight.

I Coherent description of multi-scale lensing:

I Fluid = average lensing: Smooth lensing

I non-fluid = noise: Clumpiness.

I Effects on distance-redshift relation.
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Cosmological lensing

The Jacobi matrix

Jacobi matrix D relates shape of light beam to its angular shape at

observation.

I ξA: shape of

image.

I Jacobi matrix

(Linearity of

NGDE):

ξA(v) = DA
Bξ

B(0)

Observer v = 0

kµ

v1

v2 > v1

ξA(0)
sA

sA

ξA(v2)

ξA(v1)

Distances: DA =
√

det D and DL = (1 + z)2DA
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Cosmological lensing

The Sachs equation

I Sachs equation:

d2DA
B

dv2
= RA

CDC
B

I Optical tidal matrix RAB = Ra
bcds

a
Ak

bkcsdB :

RAB = RI2 +WAB

I With:

I R = − 1
2
Rabk

akb: Ricci focussing;

I Weyl distortions:

WAB = Ca
bcds

a
Ak

bkcsdB =

 −W1 W2

W2 W1

.
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Stochastic lensing for small sources

The Sachs-Langevin equation

d2D
dv2

= 〈R〉D + δRD

I 〈R〉 = 〈R〉I2: Slow varying: Deterministic;

I δR = δRI2 + W : Rapidly varying: Stochastic noise.

I Statistical homogeneity and isotropy:

〈W〉 = 〈δR(w)WA(v)〉 = 〈W1(w)W2(v)〉 = 0

I White noises:

〈δR(v)δR(w)〉 = CR(v)δ(v − w)

〈WA(v)WB(w)〉 = CW(v)δ(v − w)δAB
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Stochastic lensing for small sources

Fokker-Planck-Kolmogorov equation for the S-L equation

Assuming Noise is a Gaussian white noise:

∂p
(
v,D, Ḋ

)
∂v

= −ḊAB
∂p

∂DAB
− 〈R〉DAB

∂p

∂ḊAB

+
1

2
[CR δAEδCF + CW(δACδEF − εACεEF )]DEBDFD

∂2p

∂ḊAB∂ḊCD

I Boundary condition fixed: p
(

0,D, Ḋ
)

= δ(D)δ
(
Ḋ − I2

)
.

I Full statistical info on lensing: evolution for moments etc.
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Stochastic lensing for small sources

Some analytic results: first order corrections

FPK Eq. can be used to calculate moments of p
(
v,D, Ḋ

)
.

I Expand DA = D0 +D1 and θ = θ0 + θ1 with ’background’:

D̈0 = 〈R〉D0 and θ0 =
Ḋ0

D0
.

I First order corrections to DA (see also [Kantowski, 1969]):

δ
(1)
DA
≡ 〈D1〉

D0
= −2

∫ v

0

dv1
D2

0(v1)

∫ v1

0

dv2
D2

0(v2)

∫ v2

0

dv3 D
4
0(v3)CW(v3) < 0
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Stochastic lensing for small sources

A result on the variance of DA

Pushing to second order, we get:

d3

dx3

[
var [DA]

D2
0

]
+ 2D6

0(2CW − CR)
var [DA]

D2
0

= 2CRD
6
0

+6

∫ x

o

dx′

[
d2δ

(1)
DA

dx2

]2
+O(C3

W).

where D2
0dx = dv.

I Valid at second order in C.

I Both R and W contribute to dispersion of distance.
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An application to a Swiss-Cheese model

Results: Post-Kantowski-Dyer-Roeder corrections

I Application to Swiss-Cheese: Deterministic background is

Dyer-Roeder with ᾱ = 1− limV→+∞
Vholes

V

I First order correction to DA from Weyl focussing (source at z = 1)

(see also [Kantowski, 1969] and [Gunn,1967]).
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An application to a Swiss-Cheese model

Results: Variance of DA

We look at corrections to the variance of DA (source at z = 1):

I For clumpy universes, our estimates are way-off.

I There seems to be a problem here!

I It has to do with Weyl focussing (It is getting worse at ᾱ decreases)
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An application to a Swiss-Cheese model

A limitation: non-Gaussianity

I Use of FPK Eq. relies on Gaussianity of the noise.

I In Brownian motion: Ncol ∼ 1020 s−1 (Central limit theorem).

I But in Cosmo lensing: Nholes ∼ 103 between source and observer. Is

it enough?

I R oscillates between 0 (holes) and RFRW (cheese): compact

support so sum of contributions converges quickly to Gaussian.

I But:

p(|W|) =
2

3Wmin

(
|W|
Wmin

− 1

3

)−2
for Wmin ≤ |W| ≤ Wmax �Wmin

I Long algebraic tail ⇒ slow convergence to central limit.
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Summary and Outlook

Summary

I Stochastic lensing promising new, simple formalism to take into

account effects of clumpiness on cosmo observables.

I Given some partial, statistical info on distribution of matter, one can

infer generic properties of lensed observables (like distances).

I New, post-Dyer-Roeder approximation: shift in DA(z) due to

stochastic noise (clumpiness).

I Issue with central limit theorem for Weyl lensing: Analytical

estimates of variance break down for clumpy universe.

I Numerical integration of Sachs-Langevin Eq. allows one to go

beyond the Gaussian approx.
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Summary and Outlook

What’s next?

I Applying Stochastic lensing to more realistic models (FLRW + Pert:

WIP).

I Extend formalism to include other observables; e.g. redshift (WIP).

I Use of stochastic lensing to avoid time-consuming ray-tracing in

N-body codes.

I Problem of non-Gaussianity.
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Summary and Outlook

THANK YOU!
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