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Current template-based gravitational wave searches for compact binary coalescences use waveform
models that omit the higher order modes content of the gravitational radiation emitted, considering only the
quadrupolar ðl; jmjÞ ¼ ð2; 2Þ modes. We study the effect of such omission for the case of aligned-spin
compact binary coalescence searches for equal-spin (and nonspinning) binary black holes in the context of
two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO)
and its zero-detuned high-energy power version, which we will refer to as Advanced LIGO (AdvLIGO). In
addition, we study the case of a nonspinning search for initial LIGO (iLIGO). We do this via computing the
effectualness of the aligned-spin SEOBNRv1 reduced order model waveform family, which only considers
quadrupolar modes, toward hybrid post-Newtonian/numerical relativity waveforms which contain higher
order modes. We find that for all LIGO versions losses of more than 10% of events occur in the case of
AdvLIGO for mass ratio q ≥ 6 and total mass M ≥ 100M⊙ due to the omission of higher modes, this
region of the parameter space being larger for eaLIGO and iLIGO. Moreover, while the maximum event
loss observed over the explored parameter space for AdvLIGO is of 15% of events, for iLIGO and eaLIGO,
this increases up to (39,23)%. We find that omission of higher modes leads to observation-averaged
systematic parameter biases toward lower spin, total mass, and chirp mass. For completeness, we perform a
preliminar, nonexhaustive comparison of systematic biases to statistical errors. We find that, for a given
signal-to-noise ratio, systematic biases dominate over statistical errors at much lower total mass for eaLIGO
than for AdvLIGO.
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I. INTRODUCTION

Compact binary coalescences (CBCs) are the most
promising candidates for a first direct detection of
gravitational waves (GWs). Starting in September 2015,
the next generation of GW detectors, Advanced LIGO [1],
Advanced Virgo [2], and KAGRA [3], will come online
with and eventually reach sensitivities ∼10 times higher
than the previous one, increasing by a factor of ∼103 the
volume to which they are sensitive. This generates high
expectations for imminent first GW detection [4]. The core
of searches for CBCs is the so-called matched filter [5]. The
matched filter technique allows for GW signals to be
extracted from background noise, provided that a correct
model (waveform in our case) of the expected signal is used
as a filter of the incoming signal. Otherwise, the filter will
be suboptimal, and the GW signal could be lost or its
parameters misidentified. Current GW searches for CBCs
implement template banks of which the waveforms only
contain the quadrupolar ðl; jmjÞ ¼ ð2; 2Þmodes of the GW

emission, known as quadrupolar waveforms. These omit
the higher order mode (HM) content of the incoming
signal. This is justified by the fact that, in the nonprecessing
case, most of the power emitted by the source is carried by
these two modes.
The goal of this paper is to study the consequences of

this omission in current and future GW searches, both in
terms of loss of detections and systematic biases caused in
the estimation of the parameters (PE) of the source. We will
focus on the case of aligned-spin template banks and
nonprecessing equal aligned-spin binary black hole
(BBH) within the mass range 50M⊙ < M < 220M⊙.
For target waveforms, we consider equal aligned-spin
systems, and for bank waveforms, we use the
SEOBNRv1 reduced order model (ROM) model [6], which
describes the quadrupolar modes of equal aligned-spin
CBCs. These are characterized by their mass ratio
q ¼ M2=M1 ≥ 1, total mass M ¼ M1 þM2, and a single
effective spin parameter χ ¼ M1χ1þM2χ2

M [7]. Here, χi andMi
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recently computed [87]2. All the corrections we will use are summarized in Fig. 2.3.

Also, in this figure, we do not include recent computed 3PN spin-spin corrections to the

energy and flux [74]. For a detailed expression of the mode amplitudes as a function of

the intrinsic parameters �, see [72].

2.2.5 Visualizing the higher order modes

The dominancy of the (2, 2) mode during the coalescence of two compact objects can

be noted in Fig.2.4, where the amplitude A⇥,m of several modes h⇥,m is shown as a
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Figure 2.4: Amplitude of the ( ,m) modes of a (q,⇥) = (8, 0) system during the last
orbits of the coalescence in lineal (left) and logarithmic (right) scale. The waveform

represented is a hybrid T1-SXS waveform.

function of the time in the coalescence. Note t/M = 0 does not represent any special

time. The left plot is shown in linear scale in order to clearly show how dominant the

(2, 2) mode is: during the inspiral it is � 2 orders of magnitude larger than the next

strongest mode. However, during the very late inspiral and eventual merger (located

at the peak) the ratio A⇥,m/A2,2 can get to the order of � 0.3 for the strongest HOMs.

The more the binary tightens, the more the geometry of the system deviates from the

original quadrupolar symmetry, radiating a larger fraction of the power in the form of

higher modes, until these reach their maximum at the merger. This is best seen in the

logarithmic version of the plot in the right panel. Note also that since each mode has

an approximate phase �⇥,m ⇥ m�orb, their frequencies are roughly ⇤⇥,m ⇥ m⇤orb. Recall

that the GW frequency scales with the mass M of the system as 1/M . This implies

that for massive systems for which the (2, 2) mode has a frequency lower than lower

frequency cuto⇥ of the detector, higher order modes will be in band dominating the GW

signal arriving at the detector. As we will see in Chapter 6, this is a key point regarding

the e⇥ect that higher order modes can have in a GW search.

The ratio A⇥,m/A2,2, depends in particular on the intrinsic parameters (q,⇥) of the

binary. Instead of giving the explicit expressions of the modes, in which evaluating the

2Unless specified, we will however use 3PN corrections for the (3, 3) mode.

Higher modes of BBH radiation
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However, in this process we have not yet considered the influence of the orientation of

the detector with respect to the GW propagation vector �k. We have only considered

its location p = (�,⇤). Adding this ingredient will be the final step in order to give

the final expression of the signal arriving to our detector. We will afterwards see how

this expression can be simplified and expressed as a simple sum of cosine functions, give

explicit expressions for the matched filter and show how analytical optimizations over

extrinsic parameters can be carried out when only quadrupolar templates are considered

in our search.

3.1.1 From the source to the detector

The GW signal at a given sky location

The GW radiation arriving at a point p on the sky of the source will depend on its

location, as shown in Chapter 2, as

hp(�; r, �,⇤; t) = h+ � ih⇥ =
1

dL

�

⇤⌅2

m=⇤�

m=�⇤

Y �2
⇤,m(�,⇤)h⇤,m(�; t), (3.1)

where the dependence on the source-detector distance r is encoded in the luminosity

distance dL, the spherical harmonic modes h⇤,m and the Y �2
⇤,m factors, known as -2 spin

weighted spherical harmonics. Let us recall the property of the GWmodes in the absence

of precession

h⇤,�m = (�1)⇤h⇤⇤,m, (3.2)

that we will use in the following calculation in order to simplify the final expression for

the GW strain.

The GW signal as observed by the detector

The e⇥ect of the GW signal on a detector will depend on the location (dL, �̄, ⇤̄) of

the source in its sky and on the polarization ⇥ of the GW. The exact response of an

interferometric detector to a weak, plane GW in the long wavelength approximation

(i.e., when the size of the detector is much smaller than the wavelength of the wave) is

well known [119]. This response its encoded by the so called antenna patterns (F+, F⇥)

Searches do only include the (l,|m|)=(2,2) modes

2
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that the spin of a black hole can be made to exceed the Kerr limit if it is placed in a

bath of an scalar field with negative energy. The solution is however not stable and we

will thus consider that interesting astrophysical sources do satisfy the Kerr limit.
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Figure 2.1: Top: Source frame used in this thesis. The red solid arrow points to the
location (�,⇥) of the detector, so that it is parallel to the propagation vector �k of the
GW. Bottom: Detector Frame. The solid green arrow points to the location of the
source. In other words, it is antiparallel to the propagation vector �k of the incoming
GW. The two blue positive x̄ and ȳ axes are aligned with the arms of the detector. dL

denotes the luminosity distance between source and detector.
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dependencies on the intrinsic parameters of the source might be cumbersome, and in

order to get a direct visualization of their dependencies, it is preferable to see the actual

modes plotted. To this end, the left panel of Fig.2.5 shows the ratio A3,3/A2,2 during

the evolution of the binary for several non-spinning systems. The right panel shows

the corresponding A4,4/A2,2 ratio. As a general trend, PN predicts a more important

contribution from HOM the higher the mass ratio is. Regarding the spin, in general,

contributions from higher modes are larger the more positive the spin is. The exception

is the (3, 3) mode, whose relative amplitude grows as the spin gets more negative. Note

this mode is also the strongest of the HOMs [see Fig.2.4]. This behavior is shown in Fig

2.6. Remarkably, looking at the variation of the amplitude ratios with spin and mass

ratio, it can be noticed that the influence of the spin is much lower than that of the mass

ratio, which will be the dominant factor together with the total mass. We will discuss

this in detail in Chapter 6.

Finally, let us note that when constructing waveforms including HOM, we will include
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Figure 2.5: Relative T1 (Top) and NR (Bottom) amplitude of the higher modes (3, 3)
and (4, 4) relative to the dominant (2, 2) mode as a function of the frequency for several
non-spinning systems. Note how the higher the mass ratio q, the larger the contribution

from higher order modes.

the most dominant ones, namely the (2, 1) , (3, 2), (3, 3), (4, 3) and (4, 4). For these, let

us give the explicit expressions of the corresponding harmonics and their profiles as a

function of �, shown in Fig. 2.7. The various plots represent in dashed red the absolute

value of the corresponding (⇧,m) harmonic as a function of �, while the corresponding

negative m harmonic is represented in dashed-blue. In order to give an idea of how

the contribution of each “doublet” of modes to the full signal depends on �, the black
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curve shows the absolute value of the quantity D⌃,m = a⌃,mY �2
⌃,m + a⌃,�mY �2

l,�m, where

a⌃,m = 1 + i and a⌃,�m = (�1)⌃a⇥⌃,m = (�1)⌃(1 � i). The a functions have been defined

such that they behave as a sort of “fake modes”. Note that the (2, 2) doublet has its

minimum contribution at � = ⇥/2 (when the source is edge-on to the detector) while

m ⇤= 2 are relatively close to their maximums, conversely to what happens at � = 0

(when the source is face-on). We can then give a first estimation that HOM will be

more important for data analysis purposes at edge-on orientations of the source, i.e., as

� ⇥ ⇥/2, particularly for large q, large M and large positive spin ⇤. A detailed review

of all factors regarding the e�ect of HOM will be given in Section 6, when this e�ect will

be quantified.

Reaching the limits of PN

Although being extremely useful for its analytical condition, the PN approximation loses

its accuracy as the binary evolves. When the binary tightens, velocities become com-

parable to c and strong gravitational regime e�ects appear. The expansion parameter

x = (GM�orb
c2 )2/3 is no longer much smaller than 1. Thus for a system such that only the

late radiation gets in the band of the detector, PN does not provide suitable waveforms.

Consider for example f = 130Hz, where advanced detectors are close to their maximum

sensitivity. For a 5M⇤ system this corresponds to x = 0.215 and for 100M⇤ we get

• Large mass ratio (q) BBH show stronger higher 
modes.

• Spin has a secondary effect.

PN
N

R
 (

SX
S)

3
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that the spin of a black hole can be made to exceed the Kerr limit if it is placed in a

bath of an scalar field with negative energy. The solution is however not stable and we

will thus consider that interesting astrophysical sources do satisfy the Kerr limit.
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Figure 2.1: Top: Source frame used in this thesis. The red solid arrow points to the
location (�,⇥) of the detector, so that it is parallel to the propagation vector �k of the
GW. Bottom: Detector Frame. The solid green arrow points to the location of the
source. In other words, it is antiparallel to the propagation vector �k of the incoming
GW. The two blue positive x̄ and ȳ axes are aligned with the arms of the detector. dL

denotes the luminosity distance between source and detector.
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Higher modes dominate
at sweet-spot

(2,2) mode dominates
at sweet-spot
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Maximization of the fitting factor over Ξ is performed
running several Nelder Mead Simplex algorithms as
implemented in Ref. [37]. We let each of the runs start
sampling the parameter space at different initial regions of
the parameter space, and the highest result is chosen as the
true fitting factor F i;j. Further details about our particular
usage of Nelder Mead are given in Appendix B.
As in previous work [18], we then compute the ratio

between optimal and suboptimal volumes in which a
system hi with parameters Ξi can be detected as
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FIG. 4. The upper panels show the absolute value of the Fourier transform ~hl;mðfÞ × Δf1=2 of the (2,2), (3,3), and (4,4) modes of a
nonspinning q ¼ 8 binary and the three noise curves considered in this paper. The modes have been rescaled by an arbitrary factor
ðΔf1=2=dLÞ to clearly stand out from the noise curves, since we are only interested in their relative values. The vertical line marks
the 30 Hz cutoff of eaLIGO and iLIGO. Note how for the case ofM ¼ 100M⊙ the (2,2) mode clearly dominates at the sweet spot of the
different noise curves, while this is not the case when M ¼ 200M⊙, resulting in a higher contribution of the HM in the latter case. The
bottom panels show the corresponding whitened templates for eaLIGO (red) and AdvLIGO (black). The lower low-frequency cutoff of
AdvLIGO, together with its flatter sensitivity curve, makes the detector sensitive to a much longer inspiral, clearly dominated by the
(2,2) mode and whose amplitude (unlike for eaLIGO) dominates that of the higher mode peaks corresponding to the merger stage. This
makes contribution from the HM weaker for AdvLIGO. Also, it can be noticed how for the 200M⊙ eaLIGO case the peaks of all
whitened templates have similar amplitudes due to the (2,2) mode being clearly out of the sweet spot while the HM are in, which does
not happen for AdvLIGO.
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dominant for AdvLIGO while the contribution of the HM is
larger for the case of eaLIGO for all the mass range.

TABLE II. Grid in mass and angles Λ used for our studies.

Magnitude M cos θ φ ψ

Range ½50; 218%M⊙ [0, 1] ½0; 2πÞ ½0; πÞ
Step 12M⊙ 0.05 π=20 π=6
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implemented in Ref. [37]. We let each of the runs start
sampling the parameter space at different initial regions of
the parameter space, and the highest result is chosen as the
true fitting factor F i;j. Further details about our particular
usage of Nelder Mead are given in Appendix B.
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different noise curves, while this is not the case when M ¼ 200M⊙, resulting in a higher contribution of the HM in the latter case. The
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AdvLIGO, together with its flatter sensitivity curve, makes the detector sensitive to a much longer inspiral, clearly dominated by the
(2,2) mode and whose amplitude (unlike for eaLIGO) dominates that of the higher mode peaks corresponding to the merger stage. This
makes contribution from the HM weaker for AdvLIGO. Also, it can be noticed how for the 200M⊙ eaLIGO case the peaks of all
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not happen for AdvLIGO.

50 100 150 200
0.0

0.1

0.2

0.3

0.4

M M

I l,
m

I 2
,2

3,3 eaLIGO

4,4 eaLIGO

3,3 AdvLIGO

4,4 AdvLIGO

FIG. 5. Value of the ratio I3;3=I2;2 and I4;4=I2;2 as a function of
the total mass of a nonspinning q ¼ 8 binary for the cases of
eaLIGO and AdvLIGO. Note how the (2,2) mode is more
dominant for AdvLIGO while the contribution of the HM is
larger for the case of eaLIGO for all the mass range.

TABLE II. Grid in mass and angles Λ used for our studies.

Magnitude M cos θ φ ψ

Range ½50; 218%M⊙ [0, 1] ½0; 2πÞ ½0; πÞ
Step 12M⊙ 0.05 π=20 π=6

CALDERÓN BUSTILLO, HUSA, SINTES, and PÜRRER PHYSICAL REVIEW D 93, 084019 (2016)

084019-6

Higher modes important for high mass sources 
(+ high mass ratio, + edge-on)

[ JCB + (2016) ]



Getting some intuition
Impact of higher order modes in aligned spin searches. 
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Waveforms: Hybrid NR (SXS collaboration) + post Newtonian 
Taylor T1

Hybridisation procedure: [ JCB + (2015), arXiv:1501.00918 ]
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Note that even in the case that the signal does not include HOM, the parameters re-

covered by the SEOBNRv1-ROM model will not in general match the ones of the signal

described by the hybrid waveform model. We denote the parameters recovered in this

case as ⇤B
i,0 and thus consider the parameter bias generated by the presence of HOM to

be

�⇤i = ⇤i,0 � ⇤B
i . (6.7)

This represents the systematic parameter bias averaged over ⇥j due to the presence

of HOM in the signal. In order to asses the significance of these biases, we compared

them to the corresponding statistical uncertainty that searches are a⌅ected by due to

the presence of Gaussian noise in the data. In order to evaluate this, we employ the

indistinguishability criterion for two waveforms with mismatch � = 1�O given by [131]

and used in [111]. Two waveforms are indistinguishable at a given SNR ⇥ if � < 1/2⇥2.

We will thus consider that parameter estimation1 is not compromised due to the presence

of HOM in the target if the best matching template hB(⇤B
i ) and the one best matching

the injection with no HOM hB(⇤i,0) are insdistinguishable.

All the waveforms playing a role in this process are geometrically represented in Fig. 6.3.

The target template h(⇤) is recovered by the bank template hB(⇤B) when it includes

HOM with a match of F . Since the waveform model describing the (2, 2) modes of the

target and template bank waveforms may di⌅er, h(⇤) is in general recovered by hB(⇤B
0 )

1Or measurement following the notation in [131].
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Compute the fitting factor of hybrid PN+NR waveforms towards SEOBNRv1_ROM (only 
2,2 mode) 

Average results weighting by 
optimal SNR

(2,2)-model: SEOBNRv1_ROM

their different frequency cutoff f0, will translate into very
different event losses and parameter biases produced. The
fact of including an effective spin parameter χ in our
template bank will lead to lower event losses for non-
spinning targets than those found in Refs. [21] and [18],
and we will pay the price of important biases in the
estimated spin. This extends the study of Veitch et al.
[22], who concluded that the spin of nonspinning BBH
(lacking the HM) cannot be accurately measured using a
single-effective spin parameter template bank. Finally, we
will see that the value of the spin has a secondary effect in
the impact of the HM compared to that of the total mass and
mass ratio.

II. DATA ANALYSIS

Given two real waveforms, hðfÞ and gðfÞ, where f
denotes frequency and the one sided power spectral density
curve SnðfÞ of a detector, the inner product hhjgi can be
expressed as

hhjgi ¼ 4ℜ
Z

∞

f0

~hðfÞ~g$ðfÞ
SnðfÞ

df; ð1Þ

f0 being the low-frequency cutoff of the considered noise
curve.2 The overlap of h and g is then defined as

O ¼ hhjgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhjhihgjgi

p : ð2Þ

An output signal s is in general a combination of a GW
signal with background noise n.The SNR of a signal s
when filtered with a template h is then given by

ρ ¼ hsjhiffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p : ð3Þ

If one assumes the background noise to be Gaussian and
with zero mean, as we will do in this paper, the SNR is
directly related to the probability that a GW signal
represented by h is buried in s and to the distance at
which it can be detected.

A. Waveform parameters and fitting factor

Consider a nonprecessing CBC with intrinsic parameters
total mass, mass ratio, and effective spin collectively
denoted by Ξ ¼ fM; q; χg. Denoting by dL the luminosity
distance between source and detector, consider a frame of
reference centered on the source and described by standard
spherical coordinates ðdL; θ;φÞ such that the θ ¼ 0 axis
coincides with the total angular momentum of the binary.
Then, the strain h produced by an emitted GW with

effective polarization ψ [23] at a given point p ¼
ðdL; θ;φÞ on its sky can be decomposed as a sum of
modes hl;mðΞ; tÞ weighted by spin-2 weighted spherical
harmonics [24] Y−2

l;mðθ;φÞ as

hðΞ;dL;θ;φ;ψ ; tÞ

¼ F
dL

ðRcosψ þI sinψÞ
X

l≥2

Xm¼l

m¼−l
Y−2
l;mðθ;φÞhl;mðΞ; tÞ;

ð4Þ

where R and I denote the real and imaginary part
operators, hl;mðΞ; tÞ ¼ Al;mðΞ; tÞe−iϕl;mðΞ;tÞ, Al;m and
ϕl;m being real, and the factor F encodes the amplitude
of the antenna pattern of the detector [18,25]. Figure 1
shows the amplitude of the most dominant modes for a
nonspinning q ¼ 8 binary. Note that, as mentioned in
Sec. I, the (2,2) mode dominates the HM during most of
the coalescence.
Let us denote ðθ;φ;ψÞ≡ Λ, which we will call extrinsic

parameters, i.e., those independent of the nature of the
source. We define the match Mhg as the overlap OðhjgÞ
maximized over relative time shifts and the extrinsic
parameters of g, Λg. The fitting factor (or effectualness)
F of a bank B containing waveforms hBi with intrinsic
parameters ΞB

i to a waveform h is then defined as [16]

FBh ¼ max
i
MhhBi ðΞB

i Þ ∈ ½0; 1': ð5Þ

The fitting factor FBh gives the fraction of optimal SNR
that the bank B can recover from h,

ρsubopt ¼ FBh × ρopt ¼ FBh ×
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð6Þ

and is thus proportional to the maximum distance at which
h can be observed with a given SNR. In general, there is a
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FIG. 1. Amplitude of the ðl; mÞ modes of a ðq; χÞ ¼ ð8; 0Þ
system during the last orbits of the coalescence in the logarithmic
scale. The modes are the result of hybridizing post-Newtonian
Taylor T1 and numerical relativity data [see Sec. IV].

2As previously mentioned. we consider f0 ¼ 10 Hz for
AdvLIGO and f0 ¼ 30 Hz for eaLIGO and iLIGO.
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coincides with the total angular momentum of the binary.
Then, the strain h produced by an emitted GW with

effective polarization ψ [23] at a given point p ¼
ðdL; θ;φÞ on its sky can be decomposed as a sum of
modes hl;mðΞ; tÞ weighted by spin-2 weighted spherical
harmonics [24] Y−2

l;mðθ;φÞ as

hðΞ;dL;θ;φ;ψ ; tÞ

¼ F
dL

ðRcosψ þI sinψÞ
X

l≥2

Xm¼l

m¼−l
Y−2
l;mðθ;φÞhl;mðΞ; tÞ;

ð4Þ

where R and I denote the real and imaginary part
operators, hl;mðΞ; tÞ ¼ Al;mðΞ; tÞe−iϕl;mðΞ;tÞ, Al;m and
ϕl;m being real, and the factor F encodes the amplitude
of the antenna pattern of the detector [18,25]. Figure 1
shows the amplitude of the most dominant modes for a
nonspinning q ¼ 8 binary. Note that, as mentioned in
Sec. I, the (2,2) mode dominates the HM during most of
the coalescence.
Let us denote ðθ;φ;ψÞ≡ Λ, which we will call extrinsic

parameters, i.e., those independent of the nature of the
source. We define the match Mhg as the overlap OðhjgÞ
maximized over relative time shifts and the extrinsic
parameters of g, Λg. The fitting factor (or effectualness)
F of a bank B containing waveforms hBi with intrinsic
parameters ΞB

i to a waveform h is then defined as [16]

FBh ¼ max
i
MhhBi ðΞB

i Þ ∈ ½0; 1': ð5Þ

The fitting factor FBh gives the fraction of optimal SNR
that the bank B can recover from h,

ρsubopt ¼ FBh × ρopt ¼ FBh ×
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð6Þ

and is thus proportional to the maximum distance at which
h can be observed with a given SNR. In general, there is a
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FIG. 1. Amplitude of the ðl; mÞ modes of a ðq; χÞ ¼ ð8; 0Þ
system during the last orbits of the coalescence in the logarithmic
scale. The modes are the result of hybridizing post-Newtonian
Taylor T1 and numerical relativity data [see Sec. IV].

2As previously mentioned. we consider f0 ¼ 10 Hz for
AdvLIGO and f0 ¼ 30 Hz for eaLIGO and iLIGO.
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FIG. 6: Overlaps in source-centric coordinates, ⇤ horizontally
and � vertically, between the complete waveform and the (2, 2)
mode for Top: the non-spinning q = 1 and q = 4, Middle
the precessing P01 and P02 and Bottom: the precessing P03
signals from tab.(I). The general features of the non-spinning
images are representative of all mass ratios and (anti-) aligned
spin systems; overlaps are 1.0 at � = 0,⇥ where the full signal
reduces to the (2,2) mode, and are lowest at � = ⇥/2. There
is more interesting structure in the precessing cases.

signals, but how far away can a single detector see these
cases? We quantify how important the modes will be in
terms of SNR and volume reach in the next section.

V. SNR AND VOLUME

As noted at the end of § II, the overlap is equal to
the fractional loss in distance to which a signal can be
detected, but this value should be viewed in light of the
maximum possible distance. This maximum distance de-
pends on three factors: (1) the total energy radiated by
the source, (2) the ability of the template to extract en-
ergy of the signal from the background noise and (3) the
location of the source in the sky of the detector. For
example, in the plane of the detector along the lines 45
degrees to the arms, the response goes to zero. Along
these lines the loss in range implied by a low overlap is
irrelevant for a single detector. In this section we con-
sider the accessible distances, noting the influence of all
three factors.

We start with fig.(9), which shows the radiated energy
and distances accessible using the hideal templates, as

ID q a % of area Average Median Minimum

� 0.97

H01 1 0 100 0.997 0.998 0.995

H03 3 0 51 0.955 0.951 0.918

H04 4 0 43 0.937 0.931 0.885

H05 5 0 40 0.927 0.920 0.868

H06 6 0 37 0.916 0.907 0.847

H07 7 0 36 0.907 0.898 0.840

H08 10 0 36 0.903 0.892 0.826

H09 15 0 35 0.897 0.886 0.817

S01 1 -0.4 100 0.997 0.997 0.993

S02 1 0.4 100 0.997 0.997 0.994

S03 1 0.8 100 0.997 0.997 0.994

P01 4 0.6 (90�) 13 0.883 0.889 0.741

P02 4 0.6 (150�) 41 0.938 0.939 0.852

P03 4 0.6 (210�) 28 0.933 0.942 0.816

TABLE II: Summary values of the overlaps between the (2,2)
mode and the full template as a function of the orientation
angles (�,⇤). Names in parenthesis refer to tab.(I). Note that
the P01 precessing system has lower overlaps, and a smaller
fraction of overlaps greater than 0.97, then the other systems.

FIG. 7: Overlaps between the complete waveform and the
(2, 2) mode for non-spinning waveforms with mass ratios from
1 to 15, with all angles and total mass chosen randomly. At
higher mass ratio more of the total power is distributed into
the higher modes and the match drops accordingly.

a function of the source orientation. As expected, the
range tends to be lowest where the least power is ra-
diated, although the energy and distance plots are not
identical due to weighting by the noise curve. The en-
ergy, and hence distance, plots have the same general
shape as those corresponding in fig.(6), indicating that
the overlaps between the signal and h22 are lowest at
orientations where the energy and distance reach of the
ideal template are also lowest. This is due to the fact that
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(a) q = 1, M = 100M⇥ (b) q = 8, M = 100M⇥

FIG. 4: Optimal SNR averaged over polarization angle ⌃ for binaries located at 1 Gpc. The y-axis shows the inclination angle ⇤ in radians and
the x-axis shows the initial phase of the binary ⌥0 in radians. The left (right) corresponds to binaries with mass ratio q = 1 (q = 8) and total
mass M = 100M⇥.

(a) q = 1, M = 100M⇥ (b) q = 8, M = 100M⇥

FIG. 5: Fitting factor of quadrupole templates for di�erent orientation angles, averaged over polarization angle ⌃. The y-axis shows the
inclination angle ⇤ in radians and the x-axis shows the initial phase of the binary ⌥0 in radians. The left (right) panel correspond to binaries with
mass ratio q = 1 (q = 8) and M = 100M⇥. It may be noted that the fitting factor is smallest (largest) at ⇤ = ⌅/2 (⇤ = 0, ⌅) where contribution
from the non-quadrupolar modes is the largest (smallest).

D. Choice of template waveforms

We use the quadrupole modes (↵ = 2,m = ±2 modes) of
the EOBNRv2 [5] waveform family as detection templates for
this study. These waveforms have very good agreement with
the quadrupole modes of the hybrid waveforms discussed in
the previous section. Note the EOBNRv2 also includes the
e�ect of non-quadrupole modes. However, since this study
aims to understand the e�ect of neglecting the non-quadrupole
modes, we take only the quadrupole modes of EOBNRv2 as
templates. The waveforms are generated in time-domain using
the LALSimulation [63] software package.

E. Detector model, computation of the fitting factor

In our study we use the “zero-detuned, high-power” design
noise PSD [64] of Advanced LIGO with a low frequency cut-
o� of 20 Hz. To compute the fitting factor [see Eq. (2.8)], the
maximization of the inner product over the two template pa-
rameters ⌥0 and t0 is performed using the standard techniques
– by taking the absolute value of the inner product defined
in Eq. (2.5) and by maximizing the correlation function by
means of a Fast Fourier Transform. Maximization of the in-
ner product over the mass parameters is performed using the

Nelder-Mead down-hill simplex maximization algorithm as
implemented in SciPy [65]. We choose to do this maximiza-
tion in the two dimensional space of chirp massM ⇤ M�

3
5

and symmetric mass ratio � ⇤ m1m2/M2.

IV. RESULTS AND DISCUSSION

A. E↵ectualness of quadrupole-mode templates

In this section, we evaluate the e�ectualness of the
quadrupole-mode templates by computing the fitting factor of
a quadrupole-mode-only inspiral-merger-ringdown template
family, EOBNRv2 against the hybrid waveforms described in
Section III C.

It is evident from Eqs. (2.1) and (2.2) that the observed GW
signal h(t) depends on angles ⇤, ⌥0, ⌃, ⇥ and ⇧. However, the
dependence of h(t) on ⇥ and ⇧ comes as an amplitude scaling
and a constant phase shift (see, e.g., [17]). While the observed
SNR has a strong dependence on ⇥ and ⇧, since the match
between the signal and template is computed using normal-
ized waveforms, the match has only very weak dependence
on these angles. Hence we set ⇥ = ⇧ = 0 in this study. The
error introduced by this restriction is very small (⌅ 0.1%) due
the weak dependence of the matches on ⇥, ⇧ and the strong se-
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mass ratio q = 1 (q = 8) and M = 100M⇥. It may be noted that the fitting factor is smallest (largest) at ⇤ = ⌅/2 (⇤ = 0, ⌅) where contribution
from the non-quadrupolar modes is the largest (smallest).

D. Choice of template waveforms

We use the quadrupole modes (↵ = 2,m = ±2 modes) of
the EOBNRv2 [5] waveform family as detection templates for
this study. These waveforms have very good agreement with
the quadrupole modes of the hybrid waveforms discussed in
the previous section. Note the EOBNRv2 also includes the
e�ect of non-quadrupole modes. However, since this study
aims to understand the e�ect of neglecting the non-quadrupole
modes, we take only the quadrupole modes of EOBNRv2 as
templates. The waveforms are generated in time-domain using
the LALSimulation [63] software package.

E. Detector model, computation of the fitting factor

In our study we use the “zero-detuned, high-power” design
noise PSD [64] of Advanced LIGO with a low frequency cut-
o� of 20 Hz. To compute the fitting factor [see Eq. (2.8)], the
maximization of the inner product over the two template pa-
rameters ⌥0 and t0 is performed using the standard techniques
– by taking the absolute value of the inner product defined
in Eq. (2.5) and by maximizing the correlation function by
means of a Fast Fourier Transform. Maximization of the in-
ner product over the mass parameters is performed using the

Nelder-Mead down-hill simplex maximization algorithm as
implemented in SciPy [65]. We choose to do this maximiza-
tion in the two dimensional space of chirp massM ⇤ M�
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and symmetric mass ratio � ⇤ m1m2/M2.

IV. RESULTS AND DISCUSSION

A. E↵ectualness of quadrupole-mode templates

In this section, we evaluate the e�ectualness of the
quadrupole-mode templates by computing the fitting factor of
a quadrupole-mode-only inspiral-merger-ringdown template
family, EOBNRv2 against the hybrid waveforms described in
Section III C.

It is evident from Eqs. (2.1) and (2.2) that the observed GW
signal h(t) depends on angles ⇤, ⌥0, ⌃, ⇥ and ⇧. However, the
dependence of h(t) on ⇥ and ⇧ comes as an amplitude scaling
and a constant phase shift (see, e.g., [17]). While the observed
SNR has a strong dependence on ⇥ and ⇧, since the match
between the signal and template is computed using normal-
ized waveforms, the match has only very weak dependence
on these angles. Hence we set ⇥ = ⇧ = 0 in this study. The
error introduced by this restriction is very small (⌅ 0.1%) due
the weak dependence of the matches on ⇥, ⇧ and the strong se-

[ Varma + (2014) ]

2

find that the match (that was not maximized over the masses
of the templates) can be lower than 0.97 for up to 65% of
source orientations. However, orientations that correspond to
the least matches also correspond to those with least intrinsic
luminosity, therefore the e�ect of sub-dominant modes is sup-
pressed. While Pekowsky et al calculated matches using the
same parameters for the target and template waveforms, actual
GW searches employ a template bank over which the match
is maximized. Brown et al [18] studied the same problem
using a template bank of quadrupole-mode-only e�ective-one-
body waveforms calibrated to numerical relativity simulations
(EOBNRv2) [5]. This study, which employed EOBNRv2
waveforms that include sub-dominant modes as the “target
signals”, concluded that for non-spinning BBHs with compo-
nent masses 3M⇥ ⇤ m1,m2 ⇤ 25M⇥, the maximum loss in the
detection rate for a binary with given mass parameters (after
averaging over other parameters) is less than ⌅ 10%. While
Brown et al’s investigation considered only binaries with
m1,m2 ⇤ 25M⇥, non-quadrupole modes are expected to be
more important for binaries with even higher masses. Capano
et al [19] recently extended this study to m1,m2 ⇤ 200M⇥.
While the study by Brown et al characterized only the loss
of SNR of the quadrupole-mode template bank, Capano et
al studied, in addition to this, the e�ect of non-quadrupole
modes on the “⇤2” signal-based veto. They also compared the
e⇥ciency of a search employing “full-mode” templates with a
search using only quadrupole-mode templates after consider-
ing the increased false alarm probability (due to the increase
in the number of templates). They conclude that, a search
employing a full-mode template bank will actually result in a
worse sensitivity than one employing a quadrupole-mode-only
bank for q � 4 due to the increase in threshold SNR required
to keep the false alarm probability fixed. For binaries with
q > 4, inclusion of higher modes in the waveform templates
can produce a moderate improvement in the detection volume.

While the studies mentioned above investigated the e�ect
of non-quadrupole modes on the detection of GWs, Litten-
berg et al [20] studied the systematic errors in the estimated
parameters and compared them against the expected statisti-
cal errors using a parameter estimation algorithm employing
Markov-Chain Monte-Carlo (MCMC) technique. Because of
the computational cost of the MCMC algorithm, the study had
to be restricted to a few sample points in the parameter space.
They concluded that, for binaries in the range 1 ⇤ q ⇤ 6 and
M < 60M⇥ with a fixed inclination angle � = ⇥/3, the system-
atic errors introduced by neglecting non-quadrupole modes
are smaller than the expected statistical errors at SNR � 12.
However, for larger masses (M = 120M⇥, q = 6, � = ⇥/3), they
have found that neglecting higher modes will cause systematic
biases larger than the statistical errors at SNR ⇧ 12.

B. Summary of this study

While the study by Pekowsky et al uses NR waveforms
as target signals, it was rather incomplete in taking into ac-
count all the relevant aspects of the GW searches. The studies
by Brown et al and Capano et al, while being exhaustive in
considering the relevant aspects of the GW searches, use a
semi-analytical waveform family (EOBNRv2, which models
only 4 sub-dominant modes) to describe the target signals.
Here we supplement the earlier work by revisiting this prob-
lem: As our target signals, we use “hybrid waveforms” con-
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FIG. 1: This plot summarizes the region in the parameter space
of non-spinning black-hole binaries where contributions from non-
quadrupole modes are important for GW detection and parameter
estimation. The bottom horizontal axis reports the symmetric mass
ratio of the binary while the top horizontal axis shows the mass
ratio. The vertical axis reports the total mass. Shaded areas show
the regions in the parameter space where the loss of detection rate
due to neglecting non-quadrupole modes is larger than 10% and/or
the systematic bias in the estimated parameters is larger than the
expected statistical errors for a sky-averaged SNR of 8.

taining all the relevant modes (with  <= 4). The hybrid
waveforms are constructed by matching NR simulations de-
scribing the late inspiral, merger and ringdown of the binary
with PN/EOB waveforms describing the early inspiral. We
consider the e�ective volume of a search (1 �loss of detection
rate) using quadrupole-mode template banks after averaging
over all the relative inclinations of the binary with respect to
the detector. Our results are broadly in agreement with those
obtained by Capano et al. In addition to the detection aspect,
we also study the e�ect of sub-dominant modes in parameter
estimation by characterizing the systematic errors in estimat-
ing the binary parameters using a quadrupole-only template
family. While Littenberg et al studied the systematic and sta-
tistical errors at a handful of points in the parameter space
(assuming fixed orientation for target binaries), we compare
the systematic biases averaged over all angles describing the
relative orientation of the binary and compare them against
the sky-averaged statistical errors. While Littenberg et al used
an MCMC algorithm to compute statistical and systematic
errors, we compute the systematic errors by maximizing the
match of the quadrupole-only template bank with the target
signals including all modes. Statistical errors are computed
using the Fisher matrix formalism employing quadrupole-only
templates. Wherever comparisons are possible, our results are
broadly in agreement with those of Littenberg et al.

We consider non-spinning BBHs with total masses 20M⇥ ⇤
M ⇤ 250M⇥ and mass ratios 1 ⇤ q ⇤ 18. Hybrid waveforms
with q ⇤ 8 are constructed by matching NR waveforms com-
puted by the SpEC code [21–33], kindly made public by the
SXS collaboration [34], with PN/EOB waveforms describing

-Low match for edge-on orientations.
-These produce however the lowest SNR 

(for suitable low masses)
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(tiles above the black-dashed line) are one to four orders
of magnitude smaller than equal mass-ratio systems with
equivalent total masses. Using the split-bank is therefore
unlikely to substantially increase the probability of mak-
ing a gravitational-wave detection over a dominant-mode
bank unless there is a large population of high-mass ratio
IMRIs in the universe.

In order to use a split bank more investigation is
required to establish how exactly to use sub-dominant
modes in a real search. Open questions include how to
search over � and ⇤,15 and how to apply a coincidence test
between multiple detectors. Given that using a split bank
has negligible impact on the overall probability of making
a gravitational-wave detection in advanced LIGO, simply
using a dominant-mode bank everywhere may be more
desirable.

We did not try to predict advanced LIGO BBH detec-
tion rates, as doing so would require a choice of astro-
physical rates. However, Fig. 10 can be used to predict
detection rates if a particular astrophysical rate is as-
sumed. The volumes given in Fig. 10 are for a split
bank; dividing the sensitive volumes by the net gains

15 One possibility is to simply place templates in � and ⇥ using the
stochastic method described in Ref. [53] In that case, the SNR
of each template would be found using Eq. (A20).

given in Fig. 9 yields the sensitive volumes if a dominant-
mode bank is used everywhere instead. For example, if a
dominant-mode bank is used, the sensitive volume of the
largest-mass ratio tile is � 0.2Gpc3 instead of 0.43Gpc3.
The sensitive volumes we report were calculated using a
single detector. Since real searches use a network of de-
tectors, actual sensitive volumes may vary depending on
the relative sensitivities of each detector.

We emphasize that in this study we only considered
non-spinning signals. Sub-dominant modes are likely to
play a more important role when one or both of the com-
ponent masses are spinning. Currently, there are no spin-
ning waveform models available with merger and ring-
down that include sub-dominant modes. Once such wave-
forms become available, creating a sub-dominant mode
search may be more advantageous. Since our analytic
maximization over ⇥ in Appendix A is still valid if the
component masses are spinning, the result therein [specif-
ically Eq. (A20)] can be used in such a search.

A dominant-mode EOB model calibrated to numeri-
cal relativity that incorporates spins aligned with the or-
bital angular momentum does currently exist [54], as well
as spinning “phenomological” models derived from nu-
merical relativity [55, 56]. Past BBH searches have only
used non-spinning templates, but there is much work cur-
rently on-going to extend template banks into the spin-
ning regime [53, 57]. Doing so brings up many of the

Reduction of sensitivity
due to the larger number 

of templates.

Worth to include higher modes for 
certain part of

the parameter space.

[ Capano + (2013) ]

•  All considered the design Advanced LIGO curve (f0=10Hz).

• Restricted to non-spinning targets and template banks

• We extend to aligned-spin searches and early Advanced LIGO (f0=30Hz).
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Figure 6.4: Fitting factor (Left) and SNR (Right) for a (q,M) = (8, 218M�) system
as as a function of (�,⇤) for the 3 studied detectors. The factor ⇥max corresponds to

the maximum SNR obtained along the sphere.

very massive systems, HOM can be as dominating as the quadrupole mode in the

detector band, This causes the maximum SNR to be obtained for a location other

than � = 0, where the quadrupole mode and the HOM interact constructively. For

this reason, the peak of the SNR for the case shown for iLIGO case in Fig. 6.4 is

displaced from � = 0.

✓ = 0

� = ⇥/2

• Sky around source projected 
onto the (x,y) orbital plane.

• Center corresponds to face-on.

• Perimeter corresponds to edge-
on.

• The color code indicates the 
value of the measured 
magnitude.
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Figure 6.4: Fitting factor (Left) and SNR (Right) for a (q,M) = (8, 218M�) system
as as a function of (�,⇤) for the 3 studied detectors. The factor ⇥max corresponds to

the maximum SNR obtained along the sphere.

very massive systems, HOM can be as dominating as the quadrupole mode in the

detector band, This causes the maximum SNR to be obtained for a location other

than � = 0, where the quadrupole mode and the HOM interact constructively. For

this reason, the peak of the SNR for the case shown for iLIGO case in Fig. 6.4 is

displaced from � = 0.
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Figure 6.5: Fitting factor for (q,M) = (4, 50M�) and (q,M) = (8, 218M�) systems
as a function of (�,⇤) for the 3 studied detectors.

due to the inclusion of the e�ective spin parameter ⇥ in our template waveforms, which

provides an extra degree of freedom that can be exploited by quadrupolar waveforms to

imitate signals containing HOM. This is also the main reason for the di�erent results

obtained for iLIGO and eaLIGO, which have the same frequency cuto�.

Regarding the e�ect of spin, none of the q = 1 spinning cases reached losses even close

• Fitting factors are lower the 
larger q and M are.

• Lower for edge-on cases.

• Lowest for iLIGO (f=30Hz & 
non-spinning templates.)

• Larger for eaLIGO (spinning 
templates)

• Largest for aLIGO (f=10Hz.)
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Figure 6.6: Top: Fractional volume loss in % for non-spinning q = (4, 6, 8) systems
in (dotted, dashed, solid). Bottom: same for (q,�) = (3; 0,±0.5) with the style code
indicated in the corresponding caption. Note that since we used a non-spinning template

bank for iLIGO, we did not consider spinning targets.

to 2% and is for this reason that they are not included in Fig.6.6. However, for the

(q,�) = (3,±0.5) case, losses are very similar those obtained for corresponding non-

spinning case (see lower panel of 6.6). Note that for the two studied cases, losses are

larger for the aligned-spin case than for the anti-aligned one for low mass. Looking at

Fig.2.6 it is hard to check whether this behavior is to be expected. Note that as the

spin gets more positive, the contribution of HOM to the signal grows in all cases except

• 10% loss for q>4 (M>100 solar 
masses.) for AdvLIGO (note: 
M=100 solar masses for non-
spinning bank).

• 10% loss for q>4 (M>100 solar 
masses.) and q>6 for all mass 
range for eaLIGO.

• Losses up to 25% for eaLIGO

• Very similar losses for spinning 
and non-spinning targets (spin is 
subdominant).

13
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Impact of higher order modes in aligned spin searches. 

• Biases larger for edge-on 
systems and eaLIGO.

• Larger the larger q and M.

• Largest biases are towards 
lower total masses, as this 
increments the frequency of the 
bank waveform.

• When the mass is over-
estimated, the mass ratio is 
underestimated and viceversa.
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Figure 6.7: Fractional mass bias �M in % for several systems as a function of (�,⇥)
for the case of AdvLIGO (Left) and eaLIGO (Right).

values. This qualitative behavior coincides with that observed in [2]. Note that system-

atic parameter biases can get as large as �30% for the (q,M) = (8, 218M�) case for

AdvLIGO, while for eaLIGO such a bias is already obtained for (q,M) = (8, 98M�) due

to its higher frequency cuto⇥. This di⇥erence in the magnitude of systematic parameter

Juan Calderón Bustillo, Ph.D Dissertation (30th July 2015, UIB ) 14
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• Biases larger for edge-on 
systems and eaLIGO.

• Larger the larger q and M.

• Largest biases are towards 
lower spins.

• Biases can get to -1 for non-
spinning edge-on systems.
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Figure 6.8: Recovered spin ⇥ for several systems as a function of (�,⇤) for the case
of AdvLIGO (Left) and eaLIGO (Right).

Averaged systematic biases and statistical errors

Fig.6.9 shows the averaged parameter bias over the observable volume for the studied

systems. As a general trend, neglection of HOM causes biases towards lower (⇥, M , Mc)
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Figure 6.9: Top: M , Mc, and � systematic bias for the q = (3, 4, 6, 8) (from solid
to dot-dashed) nS cases. We use the same color-detector code as in Fig.2. Bottom:
Same for the (q;�) = (3; 0,±0.5). We use dashed (dotted) for - (+) spin and add

(q,�) = (1,�0.2) case in solid green for eaLIGO.

(thus, to higher q) which increase as M and q do. As expected, biases are much larger for

iLIGO and eaLIGO than for AdvLIGO. In particular, note that the lower seismic wall of

AdvLIGO allows for an excellent recovery of Mc for most of the mass range. Regarding

spinning cases, larger systematic biases were obtained for anti-aligned spin cases than

for aligned spin ones. For q = 1, only the eaLIGO cases are shown, which were the

only ones having systematic biases comparable to those of the other systems. Last, we

want to note that biases typically reach values of �(M,Mc,�) = (�40%,�20%,�0.9)

for q ⇤ 4 high mass edge-on cases for eaLIGO and (�30%,�20%,�0.5) for AdvLIGO.

Since these orientations the SNR is the lowest, they are the ones contributing the less

to the averaged biases. Recall this behavior was also observed for the case of event losses.

We now move to the comparison the sky-averaged systematic biases to the statistical

• Biases are larger the larger q 
and M are.

• Larger for eaLIGO (f=30Hz).

• Large spin biases for eaLIGO.

• Larger biases for negative spin 
systems.

16
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Impact of higher order modes in aligned spin searches. 

• Higher modes have a large impact in systems with large mass ratio and total mass, specially if 
edge-on.

• Including a spin parameter in the template bank, reduces losses for the case of non-spinning 
targets (before applying signal based vetoes) at the cost of large spin bias.

• Losses of events (up to 26%) are larger for the case of early Advanced LIGO.

• Including higher modes is (in principle) worth for a larger portion of the parameter space 
for early advanced LIGO.

17

• Include precessing sources (in prep. with D. Shoemaker, P. Laguna K. Jani)

• Impact for chi-squared in gravitational wave search pipelines (in prep. with K.Jani)

• Build template bank including higher modes and run a search (addressing it…)
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• Precession dominates for low mass systems, and Design Advanced LIGO.

• Higher modes dominate for large total mass.

[NR by Jani + (2016) ]

LVC+Virgo [2016]



Precessing Targets II

Juan Calderón Bustillo, Ph.D Dissertation (30th July 2015, UIB ) Universitat de les Illes Balears, Departament de Física 

Impact of higher order modes in aligned spin searches. 

19

Face-on Edge-on
0 500 1000 1500 2000

0.75

0.80

0.85

0.90

0.95

Orientation 

Fi
tti
ng
Fa
ct
or

Precessing q=6 GT0745 vs. SEOBNRv2

M=90M
ü
EA

M=90M
ü
ZD

M=120M
ü
EA

M=120M
ü
ZD



Searches and chi-squared

Juan Calderón Bustillo, Ph.D Dissertation (30th July 2015, UIB ) Universitat de les Illes Balears, Departament de Física 

Impact of higher order modes in aligned spin searches. 

20

Separation of injections and background via chi-squared
Injections do not contain 

higher modes
Injections contain 

higher modes

Injected signals: EOBNRv2 and EOBNRv2HM. q=6 M=200
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their different frequency cutoff f0, will translate into very
different event losses and parameter biases produced. The
fact of including an effective spin parameter χ in our
template bank will lead to lower event losses for non-
spinning targets than those found in Refs. [21] and [18],
and we will pay the price of important biases in the
estimated spin. This extends the study of Veitch et al.
[22], who concluded that the spin of nonspinning BBH
(lacking the HM) cannot be accurately measured using a
single-effective spin parameter template bank. Finally, we
will see that the value of the spin has a secondary effect in
the impact of the HM compared to that of the total mass and
mass ratio.

II. DATA ANALYSIS

Given two real waveforms, hðfÞ and gðfÞ, where f
denotes frequency and the one sided power spectral density
curve SnðfÞ of a detector, the inner product hhjgi can be
expressed as

hhjgi ¼ 4ℜ
Z

∞

f0

~hðfÞ~g$ðfÞ
SnðfÞ

df; ð1Þ

f0 being the low-frequency cutoff of the considered noise
curve.2 The overlap of h and g is then defined as

O ¼ hhjgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhjhihgjgi

p : ð2Þ

An output signal s is in general a combination of a GW
signal with background noise n.The SNR of a signal s
when filtered with a template h is then given by

ρ ¼ hsjhiffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p : ð3Þ

If one assumes the background noise to be Gaussian and
with zero mean, as we will do in this paper, the SNR is
directly related to the probability that a GW signal
represented by h is buried in s and to the distance at
which it can be detected.

A. Waveform parameters and fitting factor

Consider a nonprecessing CBC with intrinsic parameters
total mass, mass ratio, and effective spin collectively
denoted by Ξ ¼ fM; q; χg. Denoting by dL the luminosity
distance between source and detector, consider a frame of
reference centered on the source and described by standard
spherical coordinates ðdL; θ;φÞ such that the θ ¼ 0 axis
coincides with the total angular momentum of the binary.
Then, the strain h produced by an emitted GW with

effective polarization ψ [23] at a given point p ¼
ðdL; θ;φÞ on its sky can be decomposed as a sum of
modes hl;mðΞ; tÞ weighted by spin-2 weighted spherical
harmonics [24] Y−2

l;mðθ;φÞ as

hðΞ;dL;θ;φ;ψ ; tÞ

¼ F
dL

ðRcosψ þI sinψÞ
X

l≥2

Xm¼l

m¼−l
Y−2
l;mðθ;φÞhl;mðΞ; tÞ;

ð4Þ

where R and I denote the real and imaginary part
operators, hl;mðΞ; tÞ ¼ Al;mðΞ; tÞe−iϕl;mðΞ;tÞ, Al;m and
ϕl;m being real, and the factor F encodes the amplitude
of the antenna pattern of the detector [18,25]. Figure 1
shows the amplitude of the most dominant modes for a
nonspinning q ¼ 8 binary. Note that, as mentioned in
Sec. I, the (2,2) mode dominates the HM during most of
the coalescence.
Let us denote ðθ;φ;ψÞ≡ Λ, which we will call extrinsic

parameters, i.e., those independent of the nature of the
source. We define the match Mhg as the overlap OðhjgÞ
maximized over relative time shifts and the extrinsic
parameters of g, Λg. The fitting factor (or effectualness)
F of a bank B containing waveforms hBi with intrinsic
parameters ΞB

i to a waveform h is then defined as [16]

FBh ¼ max
i
MhhBi ðΞB

i Þ ∈ ½0; 1': ð5Þ

The fitting factor FBh gives the fraction of optimal SNR
that the bank B can recover from h,

ρsubopt ¼ FBh × ρopt ¼ FBh ×
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð6Þ

and is thus proportional to the maximum distance at which
h can be observed with a given SNR. In general, there is a
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FIG. 1. Amplitude of the ðl; mÞ modes of a ðq; χÞ ¼ ð8; 0Þ
system during the last orbits of the coalescence in the logarithmic
scale. The modes are the result of hybridizing post-Newtonian
Taylor T1 and numerical relativity data [see Sec. IV].

2As previously mentioned. we consider f0 ¼ 10 Hz for
AdvLIGO and f0 ¼ 30 Hz for eaLIGO and iLIGO.
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their different frequency cutoff f0, will translate into very
different event losses and parameter biases produced. The
fact of including an effective spin parameter χ in our
template bank will lead to lower event losses for non-
spinning targets than those found in Refs. [21] and [18],
and we will pay the price of important biases in the
estimated spin. This extends the study of Veitch et al.
[22], who concluded that the spin of nonspinning BBH
(lacking the HM) cannot be accurately measured using a
single-effective spin parameter template bank. Finally, we
will see that the value of the spin has a secondary effect in
the impact of the HM compared to that of the total mass and
mass ratio.

II. DATA ANALYSIS

Given two real waveforms, hðfÞ and gðfÞ, where f
denotes frequency and the one sided power spectral density
curve SnðfÞ of a detector, the inner product hhjgi can be
expressed as

hhjgi ¼ 4ℜ
Z

∞

f0

~hðfÞ~g$ðfÞ
SnðfÞ

df; ð1Þ

f0 being the low-frequency cutoff of the considered noise
curve.2 The overlap of h and g is then defined as

O ¼ hhjgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhjhihgjgi

p : ð2Þ

An output signal s is in general a combination of a GW
signal with background noise n.The SNR of a signal s
when filtered with a template h is then given by

ρ ¼ hsjhiffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p : ð3Þ

If one assumes the background noise to be Gaussian and
with zero mean, as we will do in this paper, the SNR is
directly related to the probability that a GW signal
represented by h is buried in s and to the distance at
which it can be detected.

A. Waveform parameters and fitting factor

Consider a nonprecessing CBC with intrinsic parameters
total mass, mass ratio, and effective spin collectively
denoted by Ξ ¼ fM; q; χg. Denoting by dL the luminosity
distance between source and detector, consider a frame of
reference centered on the source and described by standard
spherical coordinates ðdL; θ;φÞ such that the θ ¼ 0 axis
coincides with the total angular momentum of the binary.
Then, the strain h produced by an emitted GW with

effective polarization ψ [23] at a given point p ¼
ðdL; θ;φÞ on its sky can be decomposed as a sum of
modes hl;mðΞ; tÞ weighted by spin-2 weighted spherical
harmonics [24] Y−2

l;mðθ;φÞ as

hðΞ;dL;θ;φ;ψ ; tÞ

¼ F
dL

ðRcosψ þI sinψÞ
X

l≥2

Xm¼l

m¼−l
Y−2
l;mðθ;φÞhl;mðΞ; tÞ;

ð4Þ

where R and I denote the real and imaginary part
operators, hl;mðΞ; tÞ ¼ Al;mðΞ; tÞe−iϕl;mðΞ;tÞ, Al;m and
ϕl;m being real, and the factor F encodes the amplitude
of the antenna pattern of the detector [18,25]. Figure 1
shows the amplitude of the most dominant modes for a
nonspinning q ¼ 8 binary. Note that, as mentioned in
Sec. I, the (2,2) mode dominates the HM during most of
the coalescence.
Let us denote ðθ;φ;ψÞ≡ Λ, which we will call extrinsic

parameters, i.e., those independent of the nature of the
source. We define the match Mhg as the overlap OðhjgÞ
maximized over relative time shifts and the extrinsic
parameters of g, Λg. The fitting factor (or effectualness)
F of a bank B containing waveforms hBi with intrinsic
parameters ΞB

i to a waveform h is then defined as [16]

FBh ¼ max
i
MhhBi ðΞB

i Þ ∈ ½0; 1': ð5Þ

The fitting factor FBh gives the fraction of optimal SNR
that the bank B can recover from h,

ρsubopt ¼ FBh × ρopt ¼ FBh ×
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð6Þ

and is thus proportional to the maximum distance at which
h can be observed with a given SNR. In general, there is a
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FIG. 1. Amplitude of the ðl; mÞ modes of a ðq; χÞ ¼ ð8; 0Þ
system during the last orbits of the coalescence in the logarithmic
scale. The modes are the result of hybridizing post-Newtonian
Taylor T1 and numerical relativity data [see Sec. IV].

2As previously mentioned. we consider f0 ¼ 10 Hz for
AdvLIGO and f0 ¼ 30 Hz for eaLIGO and iLIGO.
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their different frequency cutoff f0, will translate into very
different event losses and parameter biases produced. The
fact of including an effective spin parameter χ in our
template bank will lead to lower event losses for non-
spinning targets than those found in Refs. [21] and [18],
and we will pay the price of important biases in the
estimated spin. This extends the study of Veitch et al.
[22], who concluded that the spin of nonspinning BBH
(lacking the HM) cannot be accurately measured using a
single-effective spin parameter template bank. Finally, we
will see that the value of the spin has a secondary effect in
the impact of the HM compared to that of the total mass and
mass ratio.

II. DATA ANALYSIS

Given two real waveforms, hðfÞ and gðfÞ, where f
denotes frequency and the one sided power spectral density
curve SnðfÞ of a detector, the inner product hhjgi can be
expressed as

hhjgi ¼ 4ℜ
Z

∞

f0

~hðfÞ~g$ðfÞ
SnðfÞ

df; ð1Þ

f0 being the low-frequency cutoff of the considered noise
curve.2 The overlap of h and g is then defined as

O ¼ hhjgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhjhihgjgi

p : ð2Þ

An output signal s is in general a combination of a GW
signal with background noise n.The SNR of a signal s
when filtered with a template h is then given by

ρ ¼ hsjhiffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p : ð3Þ

If one assumes the background noise to be Gaussian and
with zero mean, as we will do in this paper, the SNR is
directly related to the probability that a GW signal
represented by h is buried in s and to the distance at
which it can be detected.

A. Waveform parameters and fitting factor

Consider a nonprecessing CBC with intrinsic parameters
total mass, mass ratio, and effective spin collectively
denoted by Ξ ¼ fM; q; χg. Denoting by dL the luminosity
distance between source and detector, consider a frame of
reference centered on the source and described by standard
spherical coordinates ðdL; θ;φÞ such that the θ ¼ 0 axis
coincides with the total angular momentum of the binary.
Then, the strain h produced by an emitted GW with

effective polarization ψ [23] at a given point p ¼
ðdL; θ;φÞ on its sky can be decomposed as a sum of
modes hl;mðΞ; tÞ weighted by spin-2 weighted spherical
harmonics [24] Y−2

l;mðθ;φÞ as

hðΞ;dL;θ;φ;ψ ; tÞ

¼ F
dL

ðRcosψ þI sinψÞ
X

l≥2

Xm¼l

m¼−l
Y−2
l;mðθ;φÞhl;mðΞ; tÞ;

ð4Þ

where R and I denote the real and imaginary part
operators, hl;mðΞ; tÞ ¼ Al;mðΞ; tÞe−iϕl;mðΞ;tÞ, Al;m and
ϕl;m being real, and the factor F encodes the amplitude
of the antenna pattern of the detector [18,25]. Figure 1
shows the amplitude of the most dominant modes for a
nonspinning q ¼ 8 binary. Note that, as mentioned in
Sec. I, the (2,2) mode dominates the HM during most of
the coalescence.
Let us denote ðθ;φ;ψÞ≡ Λ, which we will call extrinsic

parameters, i.e., those independent of the nature of the
source. We define the match Mhg as the overlap OðhjgÞ
maximized over relative time shifts and the extrinsic
parameters of g, Λg. The fitting factor (or effectualness)
F of a bank B containing waveforms hBi with intrinsic
parameters ΞB

i to a waveform h is then defined as [16]

FBh ¼ max
i
MhhBi ðΞB

i Þ ∈ ½0; 1': ð5Þ

The fitting factor FBh gives the fraction of optimal SNR
that the bank B can recover from h,

ρsubopt ¼ FBh × ρopt ¼ FBh ×
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð6Þ

and is thus proportional to the maximum distance at which
h can be observed with a given SNR. In general, there is a
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FIG. 1. Amplitude of the ðl; mÞ modes of a ðq; χÞ ¼ ð8; 0Þ
system during the last orbits of the coalescence in the logarithmic
scale. The modes are the result of hybridizing post-Newtonian
Taylor T1 and numerical relativity data [see Sec. IV].

2As previously mentioned. we consider f0 ¼ 10 Hz for
AdvLIGO and f0 ¼ 30 Hz for eaLIGO and iLIGO.
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tion period (referred to as LVT151012) was reported on Oc-
tober 12, 2015 at 09:54:43 UTC with a combined matched-
filter SNR of 9.6. The search reported a false alarm rate of 1
per 2.3 years and a corresponding false alarm probability of
0.02 for this candidate event. Detector characterization stud-
ies have not identified an instrumental or environmental arti-
fact as causing this candidate event [14]. However, its false
alarm probability is not sufficiently low to confidently claim
this candidate event as a signal. Detailed waveform analysis of
this candidate event indicates that it is also a binary black hole
merger with source frame masses 23+18

�5 M� and 13+4
�5 M�, if

it is of astrophysical origin.
This paper is organized as follows: Sec. II gives an

overview of the compact binary coalescence search and the
methods used. Sec. III and Sec. IV describe the construction
and tuning of the two independently implemented analyses
used in the search. Sec. V presents the results of the search,
and follow-up of the two most significant candidate events,
GW150914 and LVT151012.

II. SEARCH DESCRIPTION

The binary coalescence search [19–26] reported here tar-
gets gravitational waves from binary neutron stars, binary
black holes, and neutron star–black hole binaries, using
matched filtering [27] with waveforms predicted by general
relativity. Both the PyCBC and GstLAL analyses correlate
the detector data with template waveforms that model the ex-
pected signal. The analyses identify candidate events that are
detected at both observatories consistent with the 10 ms inter-
site propagation time. Events are assigned a detection-statistic
value that ranks their likelihood of being a gravitational-wave
signal. This detection statistic is compared to the estimated
detector noise background to determine the probability that a
candidate event is due to detector noise.

We report on a search using coincident observations be-
tween the two Advanced LIGO detectors [28] in Hanford, WA
(H1) and in Livingston, LA (L1) from September 12 to Octo-
ber 20, 2015. During these 38.6 days, the detectors were in
coincident operation for a total of 18.4 days. Unstable instru-
mental operation and hardware failures affected 20.7 hours
of these coincident observations. These data are discarded
and the remaining 17.5 days are used as input to the analy-
ses [14]. The analyses reduce this time further by imposing
a minimum length over which the detectors must be operat-
ing stably; this is different between the two analysis, as de-
scribed in Sec. III and Sec. IV. After applying this cut, the
PyCBC analysis searched 16 days of coincident data and the
GstLAL analysis searched 17 days of coincident data. To pre-
vent bias in the results, the configuration and tuning of the
analyses were determined using data taken prior to September
12, 2015.

A gravitational-wave signal incident on an interferometer
alters its arm lengths by dLx and dLy, such that their mea-
sured difference is DL(t) = dLx � dLy = h(t)L, where h(t) is
the gravitational-wave metric perturbation projected onto the
detector, and L is the unperturbed arm length [29]. The strain
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FIG. 1. The four-dimensional search parameter space covered by
the template bank shown projected into the component-mass plane,
using the convention m1 > m2. The lines bound mass regions with
different limits on the dimensionless aligned-spin parameters c1 and
c2. Each point indicates the position of a template in the bank. The
circle highlights the template that best matches GW150914. This
does not coincide with the best-fit parameters due to the discrete na-
ture of the template bank.

is calibrated by measuring the detector’s response to test mass
motion induced by photon pressure from a modulated calibra-
tion laser beam [30]. Changes in the detector’s thermal and
alignment state cause small, time-dependent systematic errors
in the calibration [30]. The calibration used for this search
does not include these time-dependent factors. Appendix A
demonstrates that neglecting the time-dependent calibration
factors does not affect the result of this search.

The gravitational waveform h(t) depends on the chirp
mass of the binary, M = (m1m2)3/5/(m1 + m2)1/5 [31, 32],
the symmetric mass ratio h = (m1m2)/(m1 + m2)2 [33],
and the angular momentum of the compact objects c1,2 =
cS1,2/Gm2

1,2 [34, 35] (the compact object’s dimensionless
spin), where S1,2 is the angular momentum of the compact
objects. The effect of spin on the waveform depends also on
the ratio between the component objects’ masses. Parameters
which affect the overall amplitude and phase of the signal as
observed in the detector are maximized over in the matched-
filter search, but can be recovered through full parameter esti-
mation analysis [18]. The search parameter space is therefore
defined by the limits placed on the compact objects’ masses
and spins. The minimum component masses of the search are
determined by the lowest expected neutron star mass, which
we assume to be 1M� [36]. There is no known maximum
black hole mass [37], however we limit this search to bina-
ries with a total mass less than M = m1 + m2  100M�. The
LIGO detectors are sensitive to higher mass binaries, how-
ever; the results of searches for binaries that lie outside this
search space will be reported in future publications.

For binary component objects with masses less than 2M�,
we limit the magnitude of the component object’s spin to 0.05,
the spin of the fastest known pulsar in a double neutron star

Fitting Factor

FF = MaxiO(h|hB
i )

d ⇠ ⇢(h|B) = FF ⇥ ⇢(h|h)
d ⇠ FF

V ⇠ FF 3

Accesible volume proportional to FF^3

Note: There will be a bias on the recovered parameters

LVC+Virgo [2016]
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uncertainty we expect for each detector via computing the SNR ⇤0 at which the for-

mer dominate the latter. However, unlike the volume loss Ri, note that ⇤0 =
�

1/2� is

extremely sensitive to tiny variations in the parameters recovered by the Nelder-Mead

algorithm, which has always a certain risk of settling in a local maximum. In particular,

for an error �� in the estimation of �, using (3.4.2) we obtain �⇤0 ⌅ ��3/2��. Conse-

quently, this will especially a⇤ect regions of the parameter space where systematic biases

are lower and regions where the parameter space is denser i.e., regions for which tiny vari-

ations �⇥i in the parameters ⇥i cause large mismatches � = 1�O(h(⇥i)|h(⇥i+�⇥i)).2

Due to this, although some of the Nelder-Meads were run up to 18 times, Fig. 6.10 shows

several peaks that do only allow us to give a rough estimate of ⇤0. Results suggest that

at an SNR of ⇤ ⌅ 8, HOM would only be required for PE at M ⇤ 180M⇥ and for the

largest q for the case of AdvLIGO, which is consistent with [2]. However, for the case

of eaLIGO, HOM a⇤ect PE at M ⇥ 80M⇥ for roughly the same cases due to the larger

systematic biases. Regarding spin, we note that systematic biases are more (less) likely

to a⇤ect PE in the anti-aligned (aligned) spin case, for which again, systematic biases

are larger (lower).

The results suggest that, in average, systematic biases due neglection of HOM dom-

inate those due to statistical uncertainty at SNR ⇤ ⌅ 8 for total masses larger than

(80, 170)M⇥ for eaLIGO and AdvLIGO respectively. The latter is consistent with the

results found by [2] in the case of a non-spinning search. Again, the ultimate reason

behind the di⇤erent results for the di⇤erent two detectors is the fact that the lower fre-

quency cuto⇤ of AdvLIGO makes it sensitive to a much longer PN tail of the incoming

signal totally dominated by the quadrupolar modes. This generates lower systematic

biases which do not dominate those due to statistical uncertainty.
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Figure 6.10: Comparison between (⇥,⇧,⌅)-averaged systematic errors and statistical
uncertainties. We show the minimum SNR ⇤0 at which systematic biases due to the ne-
glection of HOM dominate those due to statistical uncertainties for the studied sources.
Note that for particular cases, like edge-on-high mass ones, the value of ⇤0 would be

much lower and systematic biases would be more dominant.

2Low mass cases and AdvLIGO due to the tiny parameter bias expected and to the large density of
the parameter space. Also, for the latter reason, large mass ratio and positive spin cases should also be
a�ected.


