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Introduction

Solutions to the constraint equations describe initial data for the
Einstein field equations.

i) How in practice are the constraints solved?
ii) Which fields comprise the freely-prescribable data for the system?

The constraints are usually recast as an elliptic system, but is this the
only approach to answering the above questions?
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The Constraint Equations

The Hamiltonian (H) and Momentum (M) constraints are given by

(H): r̃ [h̃] + k̃2 − K̃ij K̃
ij = 0,

(M): D̃ i K̃ij − D̃j k̃ = 0

where k̃ ≡ K̃i
i . h̃ij a (neg. def.) Rie-

mannian 3-metric and K̃ij the extrinsic
curvature.
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Highly undetermined (4 equations for 12 unknowns)

Methods of Solution:

The Conformal Method applied to the constraint equations
The Butscher Method, applied to the extended constraint equations
As an evolution system

I. Racz, Classical Quant Grav 33, 1 (2016), 015014
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The Conformal Field Equations (CFEs)

Under a conformal change g = Ξ2g̃ , vacuum EFEs become:

R[g̃ ]ab = Ξ−2(3∇cΞ∇cΞ− Ξ�Ξ)gab − Ξ−1∇a∇bΞ

Singular at conformal boundary S (Ξ = 0).

The CFEs - H.Friedrich, Comm. Math. Phys. 91 (1983).

∇a∇bΞ = −ΞLab + sgab (1a)

∇as = −Lab∇bΞ (1b)

∇cLdb −∇dLcb = dabcd∇aΞ (1c)

∇adabcd = 0 (1d)

6Ξs − 3∇cΞ∇cΞ = 0 (1e)

where Lab := 1
2Rab − 1

12Rgab, dabcd := Ξ−1Cabcd , s := 1
4�Ξ + 1

24RΞ

Regular at S and Ξ now an independent variable

The algebraic constraint (1e) need only be verified at a single point.
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The Conformal Constraint Equations

Given a spinor dyad εA
A, and assuming:

i) umbilical physical data K̃ABCD = 1
3 k̃ h̃ABCD (⇒ k̃ const.),

ii) a maximal conformal representative, k = 0,

the CCEs are equivalent to the vanishing of the following zero quantities

QAB := DABΩ− ΣAB (2a)

ZABCD := DABΣCD + ΩLABCD − shABCD (2b)

ZAB := DABs + LABCDΣCD (2c)

∆ABCD := DP (ALB)PCD − dPAB(CΣD)
P (2d)

ΛAB := DABdABCD (2e)

ΣAB
a := DP (AeB)P

a − 1
2Cb

a
c ePA

beB
P c (2f)

ΞABCD := DP (AγB)PCD + γDQP(Aγ|C |
QP

B)

+1
2(L(ABCD) + ΩdABCD)− 1

3LhABCD (2g)

to be solved for (Ω,Σ, s, L, d , ea, γ).
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Decomposition of the CCEs

Let ρAB be s.t. ρABρAB = −2, defining an orthogonal distribution.

Assuming ρAB is twistfree, χP (AB)P = 0, then S is foliated by leaves
�r with induced metric

ζABCD := 1
2ρABρCD + hABCD

Any spinor decomposes into orthogonal and transverse parts:

κAB ≡ −1
2ρABκ

⊥ + ρA
Pκ
‖
BP
, κ⊥ := ρPQκPQ , κ‖AB := ρ(A

QκB)Q

Defining P := ρABDAB and the Sen derivative DAB := ρA
PDBP ,

DAB ≡ −1
2ρABP + ρA

PDBP

Extrinsic Curvature: χABCD ≡ 1√
2
ρD

PDABρCP
Acceleration: χAB ≡ 1√

2
ρB

PPρAP
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Decomposition of the CCEs - Leaf Constraints

Decomposing the CCEs with respect to ρAB gives propagation
equations (the orthogonal parts) and leaf constraints (the
transverse parts).

DABΩ + l.o.t. = 0

DP (AeB)P
a + l.o.t. = 0

Equation (2e) for dABCD has no constraint part

To satisfy the algebraic condition (1e), it is sufficient to impose at a
single point on a given leaf, p ∈ �r , the following

Algebraic Constraint: ΣABΣAB − 2Ωs = −1
9 k̃

2 (3)

If �̃r is to be (outer-)trapped (θ+ ≤ 0), so that data corresponds to a
BH spacetime, we must impose the additional

Trapping Condition:
(

Ωtrζχ−
√

2 Σ⊥
) ∣∣∣

�r

≤ −2
3 k̃ (4)
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Decomposition of the CCEs - Propagation Equations

The propagation equations consist of subsystems of one of the three
following forms:

PΩ + l.o.t. = 0 (5)

P$a + 2DPQ$PQa + l.o.t. = 0, (6a)

P$ABa −DAB$a + l.o.t. = 0 (6b)

PΘAB + 2DPQΘPQAB + l.o.t. = 0 (7a)

PΘABCD −DABΘCD + l.o.t. = 0 (7b)

No propagation equation for the trans.-trans. component, d‖, of d .

Evolution Method: Given leaf constraint data on �0, evolve according to
the propagation equations, with freely-prescribed d‖ interpreted as sources.

i) Are the leaf constraints propagated? i.e. are they automatically
satisfied on each �r , r ≥ r0?

ii) Is the problem well-posed? i.e. Cauchy stable?
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Propagation of the leaf constraints

CCEs equivalent to (Leaf Constraints + Propagation Equations)

In order for candidate initial data to solve the CCEs, we require the
leaf constraints to be propagated.

Remarkable property: Assuming the propagation equations are satisfied,
the zero quantities (Q,Z ,∆,Λ,Σ,Ξ) satisfy homogeneous subsidiary
propagation equations.

The subsidiary equations follow from the Cartan formula:

Lρκ = iρ(dκ) + d(iρκ)

iρκ− the propagation equations

dκ− expressible as a homogeneous combination of zero quantities

Propagation of the first structure equation

LρΣk
l
j = ρi (Ξl

[kij] − Σ[i
m
jΣk]

l
m)

Jarrod Williams (Joint work with J.A.Valiente Kroon) (QMUL)The CCEs as an Evolution System July 12, 2016 9 / 12



Application: Initial data for perturbations of Schwarzschild

Umbilical Initial Data for Schwarzschild (2m = 1):

h̃ = −
(

1− 1
r + 1

9 k̃
2r2

)−1
dr2 − r2dσ2, K̃ = 1

3 k̃ h̃

Foliated by metric spheres, �̃r .

Corresponding (umbilical) Conformal Initial Data:

Ω̊ = r−1,

e̊3 = r
(

1− 1
r + 1

9 K̃
2r2

)1/2 ∂

∂r
,

s̊ = 1
2 r
−1(r−1 − 1),

L̊ = 1
2(2r−1 − 1)(e̊3 ⊗ e̊3) + 1

2(1− r−1)(e̊1 ⊗ e̊1 + e̊2 ⊗ e̊2),

d̊ = −e̊3 ⊗ e̊3 + 1
2(e̊1 ⊗ e̊1 + e̊2 ⊗ e̊2)

where {e̊1, e̊2} is an orthonormal frame on �r .

The data is conformally-extendable beyond S .
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Further Work

Further Work:

Explore Cauchy stability of the propagation system

What about the more general (non-umbilical) case? e.g. construction
of initial data for perturbations of the Kerr spacetime.

Thanks for listening!
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