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Results for post-Newtonian approximation with spin
conservative part of the motion of the binary; see talk by M. Levi on Monday

post-Newtonian (PN) approximation: expansion around 1
c → 0 (Newton)

order c0 c−1 c−2 c−3 c−4 c−5 c−6 c−7 c−8

N 1PN 2PN 3PN 4PN

non spin " " " " "

spin-orbit " " "

S2
1 " " "

S1S2 " " "

Spin3 "(!)

Spin4 "(!)
...

. . .

" known (!) partial " derived last year
Work by many people (“just” for the spin sector): Barker, Blanchet, Bohé, Buonanno, O’Connell,
Damour, D’Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin,
Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya
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Zones, separation of scales, and effective theory
EFT program in classical gravity: Goldberger, Rothstein, PRD 73 (2006) 104029; . . .

various zones→ separation of scales

scales continue down the star:
→ fluid, nucleons, quarks, ?

The physics at “smaller” scales admits
an Effective Field Theory (EFT) description!

Here: Effective theory for dynamical tides
→ dynamical, time-dependent response

(of the inner zone to perturbations from the outer zone)

→ harmonic oscillator effective theory for multipoles
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Dynamical tides in general relativity
Their description through an effective action [JS, Hinderer, Taracchini, Buonanno, in preparation]

Relativistic effective Lagrangian for dynamical tides: Qµνuν = 0

LQ =
z

4λω2
f

[
1
z2

DQµν

dσ
DQµν

dσ
− ω2

f QµνQµν

]
− z

2
EµνQµν +

z
4

K EµνEµν + ...

uµ =
Dxµ

dσ
, z =

√
−uµuµ (is the redshift for σ = t)

Newtonian case: [Flanagan, Hinderer, PRD 77 (2008) 021502]
λ is the tidal deformability (Love number)
identify ωf with real part of quasi-normal-mode frequency
K linked to (almost) completeness of modes: K ≈ 0

ωf and K are not fixed by a matching, but by physical intuition!

a prescription for the dynamical response is in Chakrabarti, Delsate, JS, arXiv:1304.2228
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Relativistic effects on dynamic tides

What are the genuine relativistic effects?

redshift effect
gravitomagnetism
→ frame dragging effect
∼ Zeeman effect

Both effectively shift
the resonance frequency ωf
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Computing the post-Newtonian (PN) corrections

Frame dragging interaction

tidal spin: Sij
Q = 4Qk [iP j]k

generates infinitesimal rotations
→ frame dragging

substitute Sij → Sij
Q in known potentials! → lazy

The tidal driving force

tidal: − 1
2

EµνQµν vs. spin induced:
CES2

2m
EµνSµSν

again substitute: CES2SiSj → −mQ ij in S2 known potentials

super lazy!!! agrees with Vines, Flanagan, PD 88 (2013) 024046

Harder: implementation into effective-one-body, analyze various models, . . .
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Conclusions

All you need is λ! ?

Almost, need more coefficients
linked to dynamical tides!

λ, ωf , K , . . .

Dynamical tides become important
close to resonance with ωf

Increase tidal effect by ∼ 30%!

Dynamical tides are important for accurate waveform models

Jan Steinhoff (AEI) Analytic models for compact binaries New York, July 13th, 2016 7 / 7



Conclusions

All you need is λ! ?

Almost, need more coefficients
linked to dynamical tides!

λ, ωf , K , . . .

Dynamical tides become important
close to resonance with ωf

Increase tidal effect by ∼ 30%!

Dynamical tides are important for accurate waveform models

Jan Steinhoff (AEI) Analytic models for compact binaries New York, July 13th, 2016 7 / 7

NS-BH waveform, TEOB models vs NR
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Effective-one-body Hamiltonian
for 1PN dynamical tides, see also Hinderer etal, PRL 116 (2016) 181101

effective test-particle Hamiltonian (point-mass potentials A, D)

Heff =

√√√√(A + Eij Q ij )

[
µ2

(
1 +

2
µ

zcHo + Cij Q ij

)
+

p2
φ

r2
+

p2
r

D
+O(p4

r )

]
+ fDT

oscillator Hamiltonian: Ho = λω2
f Pij Pij +

Q ij Q ij

4λ
1PN tidal force XA = mA/M, M = m1 + m2, ν = X1X2, µ = Mν, u = M/r

Eij = −
3Gm2

µr3
ni nj {1− [2X2 − (1− c1)ν]u}

Cij =
3Gm2

µ3r3

{
Li Lj

r2
+ [1 + (c2 − 2c1)ν] ni pj pr +

[
(1− c1)p

2 + (5c1 − c2)p
2
r

]
νni nj

}
gauge parameters c1, c2. blue term: no gauge parameters!
redshift factor (normalized to 1 for m1 � m2)

zc = 1 +
3
2

X1u +
ν

2
(1 + 2c1)

[
p2

µ2
− u

]

frame dragging terms ∼ spin-orbit + corotating frame, “SQ = Q × P”

fDT = −~SQ ·~L
1

µ2r2

{
1 + [3X1 − 5− (1 + c2)ν]

u
2
− (1− c2ν)

p2

2µ2
− c2ν

p2
r

µ2

}
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Test-particle and effective-one-body Hamiltonians

Test-particle Hamiltonian 101:

get mass-shell constraint: 0 = µ2 + pµpµ+ tidal terms, pµ =
∂L
∂uµ

solve for the energy H ≡ −p0

Absorb interaction into the metric:
notice E ∝ p2

factorize p2 terms: 0 = µ2 + 2µHoszi +

[
gµν − 1

2µ2 RαµβνQµν

]
︸ ︷︷ ︸

gµν
eff

pµpν

also works for higher multipoles

When used for EOB: no pole at the light ring in H
pole can be always by removed Akcay, etal, PRD 86 (2012) 104041

but also no gauge-invariant centrifugal radius
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