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Introduction

We give a brief survey of thermodynamic metrics, in particular the
Ruppeiner and Weinhold geometries constructed from the Hessian of the
entropy function, and how they apply to black hole thermodynamics.

We then provide a detailed discussion of the Gibbs surface of Kerr black
holes. In particular, we analyze its global properties and extend it to take
the entropy function of the inner horizon into account.

We find a coordinate system where the Weinhold geometry for a Kerr
black hole is manifestly flat. In this coordinate system we find the
geodesics of the Ruppeiner geometry. Comparison between mass and
entropy illustrates the Penrose process.

If the state of a thermodynamic system is changed the least entropy
increase is obtained if the change follows a geodesic in Ruppeiner
geometry.
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Ruppeiner and Weinhold Geometries

The Ruppeiner metric is defined on the Gibbs surface of a thermodynamic
system using nothing but the fundamental relation S = S(X ), where S is
the entropy and X i are the remaining extensive variables of the system,
including its energy. The metric tensor is simply the negative of the
Hessian matrix,

gij ≡ −
∂2S

∂X i∂X j
≡ −S,ij .

The Weinhold metric is the Hessian of the energy U as a function of the
extensive variables, including the entropy.
These two metrics are conformally related,

ds2 =
1

T
ds2

W .

where T = ∂U
∂S is the temperature. For black holes U is the mass M.
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Kerr Black Holes, also inner horizon

We need to know that the event horizon of a Kerr black hole with mass M
and angular momentum J has area:

A+ = 8πM2

(
1 +

√
1− J2/M4

)
.

The event horizon exists only if the angular momentum is bounded by the
inequality −M2 ≤ J ≤ M2, which in everyday terms is a very strong
constraint. The exact solution also has an inner horizon with area:

A− = 8πM2

(
1−

√
1− J2/M4

)
.

If J/M2 = ±1 the two horizons coincide, and we have an extreme black
hole with vanishing surface gravity (that is, vanishing Hawking
temperature).
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Outer and Inner Horizon

Since the inner horizon will play an important role below, we should
perhaps say that there is no reason to believe that the spinning black hole
at the center of the Milky Way has an inner horizon. The sense in which
that black hole is likely to be modeled by the Kerr solution is bound up
with asymptotics, just as the equilibrium states and quasi-static processes
of textbook thermodynamics are useful shorthands for a more complicated
reality.

We take the view that the inner horizon is an important feature of the
equilibrium state. Its thermodynamics has already received some attention
in the literature. Consequently we have two distinct entropy functions to
study, namely:

S± = S±(M, J) =
k

4
A± = 2M2

(
1±

√
1− J2/M4

)
,

where we have set Boltzmann’s constant k = 1/π.
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The same form of M(S,J) for outer and inner horizon

There will also be two different Hawking temperatures:

T± = ± 1

4M

√
1− J2/M4

1±
√

1− J2/M4
.

They both vanish in the extreme limit. Otherwise, T+ is positive, and T−
is negative.

If we invert the entropy function to obtain the mass M as a function of
entropy and angular momentum, we find the same functional form in both
cases,

M =

√
S±
4

+
J2

S±
.

Consequently, we will obtain the same expression for its Hessian, the
Weinhold metric, in both cases; only the range of the coordinates will
differ.
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Ruppeiner line element in coordinates M and a

The expressions for the Weinhold and Ruppeiner metrics in their defining
coordinates are not very illuminating. Changing to the dimensionless
coordinate:

a =
J

M2
, −1 ≤ a ≤ 1 ,

and using our expression for T±, we obtain for the two Ruppeiner metrics:

ds2
± =

1

T±

[
−dM2

M
+

M

2

da2

(1− a2)(1±
√

1− a2)

]
.
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Manifestly flat Weinhold metric

The expression within brackets gives the Weinhold metric. To bring the
latter to manifestly flat form, we perform a sequence of coordinate
transformations, viz.:

a = sin 2β , cosh 2α =
1

cosβ
,

t = 2
√
M coshα , x = 2

√
M sinhα .

The result is that:

ds2
± =

1

T±

[
−dt2 + dx2

]
.

Jan E. Åman (Stockholm University) Thermodynamic Metrics for Black Holes GR21, New York 8 / 16



Coordinate ranges

From the coordinate transformations it is clear that the Gibbs surface for
the Ruppeiner metric ds2

+ associated with the outer horizon is a timelike
wedge, with a locally flat Minkowski metric for its Weinhold metric. The
wedge is bounded by:

−

√√
2− 1√
2 + 1

≤ x

t
≤

√√
2− 1√
2 + 1

= tan
π

8
.

Its opening angle is 45◦. The Ruppeiner metric itself is not defined on the
edge of the wedge, since the conformal factor diverges there. However, the
Weinhold metric can evidently be analytically extended. By increasing the
coordinate range, we include also the Gibbs surface corresponding to the
inner horizon. The combined Gibbs surface is isometric to the future null
cone of Minkowski space, as far as its Weinhold metric is concerned. We
find this satisfying.
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M(t,x), S(t,x), and T(t,x)

Using the Minkowski space coordinates, we can now give unifying
expressions for the thermodynamic functions. The mass and the entropy
are:

M =
t2 − x2

4

S = 2M2(1±
√

1− a2) = M2(1 + cos 2β) =
(t2 − x2)4

4(t2 + x2)2
.

Both of them vanish on the light cone (while they remain finite on the
edge of the wedge, where the extreme black holes sit). The Hawking
temperatures T± are unified to:

T =
(t2 − x2 − 2tx)(t2 − x2 + 2tx)

2(t2 − x2)3
.

Its variation over the Gibbs surface is shown in the next slide.
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Hawking Temperature for Kerr Black Hole

Contour curves of equal
Hawking temperature

T = (t2−x2−2tx)(t2−x2+2tx)
2(t2−x2)3 .

The Hawking temperature
vanishes at the edge of the
wedge that corresponds to
the outer horizon, is nega-
tive outside and diverges on
the null cone.
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Ruppeiner scalar R for Kerr

Contour curves of equal
Ruppeiner scalar curvature

R = − 4(t4+10t2x2+x4)
(t2−x2)2(t4−6t2x2+x4)

.

It is negative inside the
wedge, positive outside and
diverges both at the edge of
the wedge and on the null
cone.
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Geodesic Curves in Ruppeiner Geometry for Kerr

Timelike geodesics inside
the wedge.

Spacelike and null geodesics
inside the wedge.
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Entropy and Mass for Kerr

Contour curves for entropy

S = (t2−x2)4

4(t2+x2)2 (red) and mass

M = t2−x2

4 (blue, dashed).

By moving inside the grey area,
from near the edge of the
wedge (large a) towards the
center, one is able to decrease
the mass (extract energy), even
though the area of the event
horizon (the entropy) increases
as it must according to Ein-
stein’s theory.
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Thermodynamic optimization of the Penrose process

This approach has been used in an attempt to find the maximal amount of
energy that can be extracted from a Kerr black hole in a finite time by
Bravetti, Gruber and Lopez-Monsalvo (2016).

From an extreme Kerr black hole can at most

1− 1√
2
≈ 0.29

of the original mass be extracted in a Penrose process but due to losses
this theoretical value can in practice not be achieved.
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End

Thank you for listening!
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