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Introduction&Motivation 

Hairy BH in  
shift-symmetric  
scalar-tensor theory



Introduction
BH hair in scalar tensor (ST) theory

No-hair theorem holds in many ST theories mass, charge, angular momentum

One consider shift-symmetric ST theory with time-dependent scalar field

BH solutions are found with non-trivial scalar hair

Bavichev, Charmousis(2014)

Covariant Galileon

Brans-Dicke theory

L � (��)2��, · · ·

L =
R

2
� 1

2
(��)2 � U(�)

Hawking (1972); Bekenstein (1996)……

Hui, Nicolis (2013)

(spherically symmetric BHs)

(in Einstein frame)

However…

BH hair

and more…



⇣ > 0, ⌘,� : const

Shift & reflection symmetry:

⇤ :

Assumptions in Bavichev and Charmousis paper

Jr = 0 Current                    regular at the horizonJ2 = JµJ
µ

�(t, r) = qt+  (r) Space-time is static in  
shift-symmetric theory

cosmological 
constant

� ! �+ const., � ! ��

L = [⇣R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤]

� ! �+ const. �µJµ = 0
EOM for scalar

Jµ = (⌘gµ⌫ � �Gµ⌫)@⌫�

Shift symmetry

Dressing BH in shift-symmetric ST theory 
Bavichev, Charmousis(2014)

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2 static and spherical symmetric
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Shift & reflection symmetry:

⇤ :

Jr = 0 Current                    regular at the horizonJ2 = JµJ
µ

�(t, r) = qt+  (r) Space-time is static in  
shift-symmetric theory

cosmological 
constant

� ! �+ const., � ! ��

L = [⇣R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤]

Dressing BH in shift-symmetric ST theory 
Bavichev, Charmousis(2014)

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2 static and spherical symmetric

does not contain bare 
contains derivative term

(* We are not afraid that value of scalar field is unbound.)

�

@µ�

Time dependence term dose not appear in the theory.



Dressing BH in shift-symmetric ST theory 
L = [⇣R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤]

Bavichev, Charmousis(2014)

�(t, r) = qt+  (r)

This metric represent Schwarzschild BH in  
the presence of cosmological constant.

We do not conceive huge bare     through the 
metric.

⇤

Stealth Schwarzschild
µ : const.

�± = qt± qµ
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Self-tuned Schwarzschild-de-sitter

A(r) = B(r) = 1� µ

r

A(r) = B(r) = 1� µ

r
+

⌘

3�
r2 6= ⇤

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2



Stealth Schwarzschild
µ : const.
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Hairy BH solutions in the generalized theory
L = [⇣R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤] �(t, r) = qt+  (r)

Babichev, Charmousis(2014)  can be generalized 
L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

Kobayashi, Tanahashi(2014)X := �1

2
(@�)2

A(r) = B(r) = 1� µ

r

A(r) = B(r) = 1� µ

r
+

⌘

3�
r2 6= ⇤

G4X :=
@G4

@X
The most general 2nd-order theory with shift & reflection symmetries

Self-tuned Schwarzschild-de-sitter
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Self-tuned Schwarzschild-de-sitter

Hairy BH solutions in the generalized theory
L = [⇣R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤] �(t, r) = qt+  (r)

Babichev, Charmousis(2014)  can be generalized 
L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

Kobayashi, Tanahashi(2014)X := �1

2
(@�)2

Xconstant solutionsA(r) = B(r) = 1� µ

r

A(r) = B(r) = 1� µ

r
+

⌘

3�
r2 6= ⇤

G4X :=
@G4

@X
The most general 2nd-order theory with shift & reflection symmetries

Many of found BHs are



How about stability of BHs?  

Motivation

Stealth Schwarzschild sol and  
Self-tuned Schwarzschild-de-sitter sol  
are very interesting solutions.
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L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2

action  2nd-order in perturbations

�(t, r) = qt+  (r)

BH perturbations with time-dependent scalar

stability conditions

Basic Procedure

Hamiltonian analysis



Set up

L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

�(t, r) = qt+  (r)

The most general 2nd-order theory with shift & reflection symmetries

Perturbations can be written as following eqs  (odd-parity)

htt = 0, htr = 0, hrr = 0

hta =
X

l,m

h0,lm(t, r)Eab@
bYlm(✓,')

hra =
X

l,m

h1,lm(t, r)Eab@
bYlm(✓,')

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2gµ⌫ = g(0)µ⌫ + hµ⌫

Eab =
p

det�✏ab

�ab
✏ab

two-dim metric on the sphere

Levi-Civita symbol

hab =
X

l,m

h2,lm(t, r)[Ea
crcrbYlm(✓,') + Eb

crcraYlm(✓,')]

gauge fixed (Regge-Wheeler gauge)

G4X :=
@G4

@X,



action  2nd-order in perturbations

Quadratic Lagrangian

L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2

BH perturbations with time-dependent scalar

�(t, r) = qt+  (r)

A1, A2, A3, A4 � A(r), B(r), G2, G4, · · ·

A1 = � l(l + 1)(r2A2BA0G4 � 2q2r2ABA0G4X + · · ·
A5/2B1/2

X := �1

2
(@�)2,



BH perturbations with time-dependent scalar

If we solve the perturbations…

L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2

�(t, r) = qt+  (r) X := �1

2
(@�)2,

variation with respect to h0

we cannot solve straightforwardly the constraint 

[A3(h
0
0 � ḣ1)]

0 = A1h0 +A4h1 +
4

r
A3ḣ1

,

constraint equation, non dynamical h0



BH perturbations with time-dependent scalar

field redefinition

L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2

�(t, r) = qt+  (r) X := �1

2
(@�)2,

2l + 1

2⇡
L(2) =

✓
A1 �

2(rA3)0

r2

◆
h2
0 +A2h

2
1

+A3


��2 + 2�

✓
ḣ1 � h0

0 +
2

r
h0

◆�
+A4h0h1

we introduce a new field �
To remove non-dynamical h0



BH perturbations with time-dependent scalar
L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2

�(t, r) = qt+  (r),

2l + 1

2⇡
L(2) =

✓
A1 �

2(rA3)0

r2

◆
h2
0 +A2h

2
1

+A3


��2 + 2�

✓
ḣ1 � h0

0 +
2

r
h0

◆�
+A4h0h1

2l + 1

2⇡
L(2) =

l(l + 1)

(l � 1)(l + 2)

r
B

A
(b1�̇

2 � b2�
02 + b3�̇�

0 � l(l + 1)b4�
2 � V (r)�2)

h0 = �2r {2a2 [r(�a3)0 + 2�a3] + r�̇a3a4}
4a2[r2a1 � 2 (ra3)

0]� r2a42
,

h1 =
4a3�̇[r2a1 � 2(ra3)0] + 2ra4[r(�a3)0 + 2a3�]

4a2[r2a1 � 2(ra3)0]� r2a42
.

field redefinition

X := �1

2
(@�)2



BH perturbations with time-dependent scalar

Hamiltonian analysis

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

�(t, r) = qt+  (r)

,

⇡ =
@ eL
@�̇

X := �1

2
(@�)2,

Hamiltonian must be positive define… 
b1 > 0, b2 > 0, b4 > 0

2l + 1

2⇡
L(2) =

l(l + 1)

(l � 1)(l + 2)

r
B

A
(b1�̇

2 � b2�
02 + b3�̇�

0 � l(l + 1)b4�
2 � V (r)�2)

H =
1

2

Z
dr

r
B

A

(
1

b1

 r
A

B
⇡ � 1

2
b3�

0

!2

+ b2�
02 + [l(l + 1)b4 + V ]�2

)



BH perturbations with time-dependent scalar

Stability conditions

F = 2


G4 � q2

A
G4X

�
> 0,

G = 2


G4 � 2XG4X +

q2

A
G4X

�
> 0,

H = 2 (G4 � 2XG4X) > 0

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

�(t, r) = qt+  (r)

,
X := �1

2
(@�)2,

b1 > 0, b2 > 0, b4 > 0



Application to sample solution

Stealth  sol, self-tuned de-sitter sol:

ST theory:

X = const.

const

const

F = 2


G4 � q2

A
G4X

�
> 0,

G = 2


G4 � 2XG4X +

q2

A
G4X

�
> 0,

H = 2 (G4 � 2XG4X) > 0

L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

const

�(t, r) = qt+  (r) X := �1

2
(@�)2,, ds2 = �A(r)dt2 +

1

B(r)
dr2 + r2d⌦2, G4X :=

@G4

@X
,



Application to sample solution

X=const solutions are unstable

Stealth  sol, self-tuned de-sitter sol:

ST theory:

X = const.

const

const

F = 2


G4 � q2

A
G4X

�
> 0,

G = 2


G4 � 2XG4X +

q2

A
G4X

�
> 0,

H = 2 (G4 � 2XG4X) > 0

L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

const

�(t, r) = qt+  (r) X := �1

2
(@�)2,, ds2 = �A(r)dt2 +

1

B(r)
dr2 + r2d⌦2,

�

+

G4X :=
@G4

@X
,

FG ' �4

✓
q2

A
G4X

◆2

< 0
near the horizon 

these terms are of  
opposite sign



Summary 

Hairy BH solutions in shift-symmetric ST theory 

BH stability conditions

Hairy BH are unstable  due to time-dependent scalar

=const. BH solutions are unstableX := �1

2
(@�)2

We obtain stability conditions (Hamiltonian analysis)
F > 0,G > 0,H > 0

Very interesting solutions are found



Back up slides



No-hair theorem
BH hair in scalar tensor (ST) theory

Brans-Dicke theory

L =
R

2
� 1

2
(��)2 � U(�)

Hawking (1972); Bekenstein (1996)……

static, Einstein flame

Conformally coupled scalar field 

BBMB solution
static, spherical symmetric,  
scalar is unbound

Bocharova, et.al (1970)

L =
R

2
� 1

2
(@�)2 � 1

12
R�2

standard scalar-tensor theory hold no-hair theorem



Stealth Schwarzschild

Hairy BH solutions
L = [⇣R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤]

Bavichev, Charmousis(2014)

�(t, r) = qt+  (r)

Metric is Schwarzschild metric, but  
scalar field is non-trivial and regular at the horizon.

Consider Eddington-Finkelstein coordinates

µ : const.

�± = qt± qµ


2

r
r

µ
+ log

p
r �p

µ
p
r +

p
µ

�
+ �0

A(r) = B(r) = 1� µ

r

v = t+

Z
(fh)�1/2dr

�+ = q


v � r + 2

p
µr � 2µ log

✓r
r

µ
+ 1

◆�
+ const



Covariant Galileon

L � (��)2��, · · ·
Hui, Nicolis (2013)

static, spherically symmetric, asymptotically flat

There are two types of loopholes

Gauss-Bonnet combination

lineally time dependence
Sotiriou, Zhou (2014)

Bavichev, Charmousis(2014)

No-hair theorem



@

@t

Z 1

�1
dr⇤

"����
@F

@t

����
2

+ V |F |2 +
����
@F

@r

����
2
#
= �2(|ḟ |2 + |ġ|2) < 0

@2F (t, r)

@t2
� @2F (t, r)

@r2⇤
+ V (r)F (t, r) = 0

BH is stable or unstable

Regge-Wheeler-Zerilli eq

F is decaying function or growing function

Our stability conditions is necessary condition…
We focus on short length mode perturbations

Regge-Wheeler-Zerilli eqs

F satisfied the boundary  
right conditions

but classically and quantum mechanically unstable



BH perturbations with time-dependent scalar
ds2 = �A(r)dt2 +

1

B(r)
dr2 + r2d⌦2�(t, r) = qt+  (r),

Hamiltonian

eL =
1

2

r
B

A

�
b1�̇

2 � b2�
02 + b3�̇�

0 � [l(l + 1)b4 + V ]�2
 
.

H =
1

2

Z
dr

r
B

A

8
<

:
1

b1

 r
A

B
⇡ � 1

2
b3�

0

!2

+ b2�
02 + [l(l + 1)b4 + V ]�2

9
=

;

b1 > 0, b2 > 0.

b4 > 0
To avoid 

kinetic and radial instability

large   instabilityl

2l + 1

2⇡
L(2) =

l(l + 1)

(l � 1)(l + 2)

r
B

A
(b1�̇

2 � b2�
02 + b3�̇�

0 � l(l + 1)b4�
2 � V (r)�2)

we suppress l-factor



mode: we rethink about gauge conditionsl = 1

htt = 0, htr = 0, hrr = 0

hta =
X

l,m

h0,lm(t, r)Eab@
bYlm(✓,')

hra =
X

l,m

h1,lm(t, r)Eab@
bYlm(✓,')

hab =
X

l,m

h2,lm(t, r)[Ea
crcrbYlm(✓,') + Eb

crcraYlm(✓,')]

automatically drop

l = 1

2l + 1

2⇡
L(2) =

l(l + 1)

(l � 1)(l + 2)

r
B

A
(b1�̇

2 � b2�
02 + b3�̇�

0 � l(l + 1)b4�
2 � V (r)�2)



A1 =
l(l + 1)

r2

"
d

dr

 
r

r
B

A
H
!

+
(l � 1)(l + 2)

2
p
AB

F
#
,

A2 = � (l � 1)l(l + 1)(l + 2)

2

p
AB

r2
G,

A3 =
l(l + 1)

2

r
B

A
H,

A4 =
(l � 1)l(l + 1)(l + 2)

r2

r
B

A
J

F = 2

✓
G4 � q2

A
G4X

◆
,

G = 2

✓
G4 � 2XG4X +

q2

A
G4X

◆
,

H = 2 (G4 � 2XG4X) ,

J = 2qG4X 
0

Coefficients
L = G2(X) +G4(X)R+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤

ds2 = �A(r)dt2 +
1

B(r)
dr2 + r2d⌦2

X := �1

2
(@�)2


