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. . . . . .

.. Defining linear stability

Linear vacuum Einstein equation with cosmological constant (LEE)

E[δgαβ ] := − 1
2∇

γ∇γδgαβ − 1
2∇α∇β(gγδδgγδ) +∇γ∇(αδgβ)γ − Λ δgαβ = 0

We are interested in equivalence classes [δgαβ ] of slns mod gauge transformations:

δgαβ ∼ δgαβ +∇αξβ +∇βξα

.

......

Rough stability idea: The outer region of a stationary black hole is linearly stable if
linear metric perturbations do not grow unbounded.
Expectation: perturbed Kerr BH metrics decay to a nearby Kerr BHs.

.

......

• If Λ ≥ 0 both II and II ∪ II′ ∪ I ∪ I′ are globally hyperbolic.
• If Λ < 0 boundary conditions have to be specified at the conformal timelike

boundary and there are instabilities if some Robin boundary conditions are
chosen.
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Carter-Penrose diagram: II outer static region; I: inner non static region
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. . . . . .

.. Modal approach: i) solving the LEE

gαβdzαdzβ︸ ︷︷ ︸
∇α, ϵαβγδ

= gab(x)dxadxb︸ ︷︷ ︸
orbit space: Dc , ϵab

+ r2(x)ĝij (y)dy i dy j︸ ︷︷ ︸
S2: D̂k , ϵij

=

︷ ︸︸ ︷
−f (r)dt2 +

dr2

f (r)
+r2

︷ ︸︸ ︷
(dθ2 + sin2(θ) dϕ2)

J2 =
3∑

k=1

(£Jk )
2, (J3 = ∂ϕ, etc ) and P : (t , r , θ, ϕ) → (t , r , π − θ, ϕ+ π)

.

......

δgαβ =
∑

p=±,ℓ,m

δg(ℓ,m,p)
αβ where J2δg(ℓ,m,±)

αβ = −ℓ(ℓ+ 1)δg(ℓ,m,±)
αβ

even (+) and odd (-) modes P∗δg(ℓ,m,±)
αβ = ±(−1)ℓδg(ℓ,m,±)

αβ

ℓ ≥ 2 LEE equivalent to infinite set of 1+1 wave eqns: gabDaDbϕ
±
(ℓ,m)

− U±
ℓ ϕ±

(ℓ,m)
= 0︸ ︷︷ ︸

LEE for ℓ≥2modes
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. . . . . .

.. Modal approach: i) solving the LEE

odd modes (p = −) even modes (p = +)

ℓ = 0 δM shift within Kerr family

ℓ = 1 δj(k) shift within Kerr family

ℓ ≥ 2 δg(ℓ,m,−)
αβ = D(−)

αβ [ϕ−
(ℓ,m)

,S(ℓ,m)] δg(ℓ,m,+)
αβ = D(+)

αβ [ϕ+
(ℓ,m)

,S(ℓ,m)]

.

......

S(ℓ,m) are spherical harmonics: ĝ ij D̂i D̂jS(ℓ,m) = −ℓ(ℓ+ 1)S(ℓ,m),

ϕ±
(ℓ,m) are solutions of 2D wave eqns: gabDaDbϕ

±
(ℓ,m) − U±

ℓ ϕ±
(ℓ,m) = 0︸ ︷︷ ︸

LEE for ℓ≥2modes

.

......

Generic perturbations parametrized by gauge invariant fields and constants:
δM, δj (k) (constants read from initial datum) and ϕ±

(ℓ,m) (dynamical fields)
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. . . . . .

.. Odd sector non modal approach: linear stability

• Standard approach to stability problem consists on setting bounds on the infinite
set of fields ϕ(ℓ,m)(t , r)

• Up to 2 derivatives of these fields enter δgαβ , thus 4 derivatives in δRα
βγδ .

• Any geometric implies
∑

(ℓ,m)

• Implications of the boundedness (either integral or pointwise) of the ϕ±
(ℓ,m)

on the
perturbed geometry not obvious a priori

• Look to parametrize the space L of linearized solutions of the Einstein’s
equations around Schwarzschild de Sitter BH with geometrical fields as an
alternative to

L = {δM, δj(k), ϕ±
(ℓ,m)

}

• Need to estimate the growth of these fields in order to analyze stability

RW equation and 4D-RW equation:

ℓ ≥ 2 LEE ⇔

RW equation︷ ︸︸ ︷[
∂2

t − ∂2
r∗ + f

(
ℓ(ℓ+1)

r2 − 6M
r3

)]
ϕ−
(ℓ,m)

= 0, D̂k D̂k S(ℓ,m) = −ℓ(ℓ+1)S(ℓ,m)

⇔
[
∇α∇α +

8M
r3 −

2Λ
3

]
Φ = 0︸ ︷︷ ︸

4D RW equation]

Φ =
∑

(ℓ≥2,m)

ϕ−
(ℓ,m)

r
S(ℓ,m)
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. . . . . .

.. Odd sector non modal approach: perturbed curvature scalars

We consider the effect of a perturbation on the curvature scalars:

Q− = 1
48

∗CαβγδCαβγδ, Q+ = 1
48 CαβγδCαβγδ, X = 1

720

(
∇ϵCαβγδ

) (
∇ϵCαβγδ

)
.

The background values are:

Q−S(A)dS = 0, Q+S(A)dS =
M2

r6 , XS(A)dS =
M2

r9 (r − 2M)−
ΛM2

3r6

.

......

This implies that the following fields are gauge invariant:

G− = δQ− and G+ = (9M − 4r + Λr3)δQ+ + 3r3δX

.

......

G− = G−[δg(−)], this functional depends on up to four derivatives of the ϕ−
(ℓ,m)

.

Using repeatedly the LEE we arrive at: (recall that L = {

odd︷ ︸︸ ︷
δj(k), ϕ−

(ℓ,m)
,

even︷ ︸︸ ︷
δM, ϕ+

(ℓ,m)
})

G− = −
6M
r7

√
4π
3

3∑
m=1

δj(m)S(1,m) −
3M
r5

∑
(ℓ≥2,m)

(ℓ+2)!
(ℓ−2)!

ϕ−
(ℓ,m)

r S(ℓ,m)

︸ ︷︷ ︸
J2(J2+2)Φ
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. . . . . .

.. Odd sector non modal approach: linear stability

.

......

G− = −
6M
r7

√
4π
3

3∑
m=1

δj(m)S(1,m) −
3M
r5

∑
(ℓ≥2,m)

(ℓ+2)!
(ℓ−2)!

ϕ−
(ℓ,m)

r S(ℓ,m)

.

......

From G− we can recover (δj(m), ϕ−
(ℓ,m)

) and therefore δg(−)
αβ in a given gauge

All the gauge invariant information in δg(−)
αβ is encoded in G−

[δg(−)
αβ ] → G−

(
[δg(−)

αβ ]
)

is a bijection

.

......
Odd LEE are entirely equivalent to

[
∇α∇α + 8M

r3 − 2Λ
3

]
(r5G−) = 0!!! (4DRWE)

.

......

Boundedness: For any smooth solution of the odd LEE which has compact support on
Cauchy surfaces of the extended I ∪ II ∪ I′ ∪ II′ Schwarzschild (Schwarzschild de
Sitter) BH, there exists a constant K− such that |G−| < K− r−6 for r > rh (rh < r < rc )

.

......

Decay: For large t Price/Brady tails give a slowly rotating Kerr/dS BH:

G− ≃ − 6M
r7

√
4π
3

∑3
m=1 δj(m)S(1,m)

7 / 11



. . . . . .

.. Even perturbations: difficulties for a 4D approach

1) For odd perturbations

ℓ ≥ 2 odd LEE ⇔ [∂2
t

H−
ℓ

(RW Hamiltonian)︷ ︸︸ ︷
−∂2

r∗ + f
(

ℓ(ℓ+1)
r2 − 6M

r3

)
]ϕ−

(ℓ,m)
= 0, D̂k D̂k S(ℓ,m) = −ℓ(ℓ+1)S(ℓ,m)

⇔
[
∇α∇α +

8M
r3 −

2Λ
3

]
Φ = 0︸ ︷︷ ︸

4D RW equation]

Φ =
∑

(ℓ≥2,m)

ϕ−
(ℓ,m)

r
S(ℓ,m)

2) For even perturbations the 2D Zerilli wave equation is not related to a 4D equation:

H+
ℓ = −∂2

r∗ + f V Z
(ℓ,m) (Zerilli Hamiltonian)

with potential (µ = (ℓ− 1)(ℓ+ 2))

V Z
(ℓ,m) =

[µ2ℓ(ℓ+ 1)− 24M2Λ]r3 + 6µ2Mr2 + 36µM2r + 72M3

r3 (6M + ((ℓ− 1)(ℓ+ 2))2r)2 .
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. . . . . .

.. Even perturbations: difficulties for a 4D approach

3) For odd perturbations there is a gauge invariant scalar related to the perturbed Weyl
tensor (thus expected to satisfy some kind of wave equation)

G− = δQ− = δ
(

1
48

∗CαβγδCαβγδ

)
4) For even perturbations we need to use differential invariants to construct curvature
related gauge invariant perturbation fields. The simplest such field is

G+ = G+ = (9M − 4r + Λr3)δQ+ + 3r3δX

Q+ = 1
48 CαβγδCαβγδ , X = 1

720

(
∇ϵCαβγδ

) (
∇ϵCαβγδ

)
.

These are not expected to satisfy wave equations as a consequence of the LEE !
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. . . . . .

.. Even perturbations: Chandrasekhar’s even ↔ odd duality

Chandrasekhar (80’s) found that

H±
ℓ = D±

ℓ D∓
ℓ − Eℓ

2, D±
ℓ = ±

∂

∂r∗
+ Wℓ(r)

.

......

D+
ℓ maps solutions of the odd (RW) equations to solutions of the even (Z) equation:

(∂2
t +H−

ℓ )ϕ−
(ℓ,m)

= 0 ⇒ (∂2
t +H+

ℓ )(D
+
ℓ ϕ

−
(ℓ,m)

) = 0

• The general solution of the differential equation D+
ℓ χ = 0 is a constant times

χ−
ℓ =

(ℓ+ 2)(ℓ− 1)r + 6M
r

exp(−wℓ r∗) ̸∈ L2(R, dr∗)

• This implies that D+
ℓ : L2(R, dr∗) → L2(R, dr∗) is injective (also in more general

spaces, since the above sln blows up at the BS).

.

......

Assume Λ ≥ 0. For any solution ϕ+
(ℓ,m)

of the ZE in L2(Rr∗ , dr∗) there is a unique

solution ϕ−
(ℓ,m)

of RWE in L2(Rr∗ , dr∗) such that ϕ+
(ℓ,m)

= D+
ℓ ϕ

−
(ℓ,m)

.
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. . . . . .

.. Even perturbations: Non modal stability

.

......

G+ = −
2MδM

r5 +
M

2r4

∑
ℓ≥2

(ℓ+ 2)!
(ℓ− 2)!

[f∂r + Zℓ]ϕ
+
(ℓ,m)

S(ℓ,m), Zℓ = Zℓ(r)

.

......

From G+ we can recover (δM, ϕ+
(ℓ,m)

) and therefore δg(+)
αβ in a given gauge

All the gauge invariant information in δg(+)
αβ is encoded in G+

[δg(+)
αβ ] → G+

(
[δg(+)

αβ ]
)

is a bijection

G+ = −
2MṀ

r5
+

M

2r3

∂
2
t Φ5 +

4∑
j=0

r−jΦj +
f (r − 3M)

r3
Φ5 +

f

r
Φ6

 +
M

2r3
∂r∗Φ6 +

M(r − 3M)

2r5
∂r∗Φ5,

(using Chandra’s duality) Φj =
∑

(ℓ≥2,m)

Pj (ℓ)
ϕ
−
(ℓ,m)

r S(ℓ,m), j = 0, ...6 satisfy the 4DRWE !!!

.

......

Boundedness: For any smooth solution of the odd LEE which has compact support on
Cauchy surfaces of the extended I ∪ II ∪ I′ ∪ II′ Schwarzschild (or Schwarzschild de
Sitter) BH, there exists a constant K+ such that |G+| < K+ r−3 for r > rh (rh < r < rc )
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. . . . . .

.. Summary
.

......

• All gauge invariant perturbation info contained in scalar
curvature perturbation fields

G− = − 6M
r7

√
4π
3

3∑
m=1

δj(m)S(1,m) −
3M
r5

∑
(ℓ≥2,m)

(ℓ+2)!
(ℓ−2)!

ϕ−
(ℓ,m)

r S(ℓ,m)

G+ = −
2MδM

r5 +
M

2r4

∑
ℓ≥2

(ℓ+ 2)!
(ℓ− 2)!

[f∂r + Zℓ]ϕ
+
(ℓ,m)

S(ℓ,m)

• [δgαβ] → (G−([δgαβ]),G+([δgαβ])) is a bijection

• LEE entirely equivalent to 4D RW equation !

• Perturbations are bounded in the outer region:

|G−| ≤ K−/r6, |G+| ≤ K+/r3

• For large t we get decay within Kerr/ds family:

G− ≃ − 6M
r7

√
4π
3

3∑
m=1

δj(m)S(1,m), G+ ≃ −
2MδM

r5
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