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The spacetime

We consider the particular case of spherically symmetric, shear-free
radiating stellar models. The line element for the interior for the
spacetimes is given by

ds2 = −A2dt2 + B2
[
dr2 + r2dΩ2

]
, (1)

where A and B are metric functions of t and r , and
dΩ2 ≡ dθ2 + sin2 θdφ2. The acceleration and and expansion are nonzero
but the fluid is shear-free.
The energy momentum tensor has the form

Tab = (µ+ p⊥) uaub + p⊥gab + (p‖ − p⊥)χaχb + qaub + qbua, (2)

with heat flux and anisotropic stress. The fluid four-velocity ua = 1
Aδ

a
0 is

comoving, χa is an unit four-vector along the radial direction (uaχ
a = 0),

and the heat flow vector qa = (0, q, 0, 0) is radially directed (uaq
a = 0).
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The Einstein field equations for the heat conducting spherically symmetric
anisotropic fluid (2) become

µ =
3

A2

B2
t

B2
− 1

B2

(
2
Brr

B
− B2

r

B2
+

4Br

rB

)
, (3a)

p‖ =
1

A2

(
−2

Btt

B
− B2

t

B2
+ 2

At

A

Bt

B

)
+

1

B2

(
B2
r

B2
+ 2

Ar

A

Br

B
+

2

r

Ar

A
+

2

r

Br

B

)
, (3b)

p⊥ = − 2

A2

Btt

B
+ 2

At

A3

Bt

B
− 1

A2

B2
t

B2
+

1

r

Ar

A

1

B2

+
1

r

Br

B3
+

Arr

A

1

B2
− B2

r

B4
+

Brr

B3
, (3c)

q = − 2

AB2

(
−Brt

B
+

BrBt

B2
+

Ar

A

Bt

B

)
, (3d)

for the line element (1). The equations (3) describe the gravitational
interactions in the interior of a shear-free spherically symmetric star with
heat flux and anisotropic pressures.
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The boundary of a radiating star divides the spacetime into interior and
exterior regions. The interior spacetime (1) has to match across the
boundary of the star to the Vaidya spacetime

ds2 = −
(

1− 2m(v)

R

)
dv2 − 2dvdR + R2

(
dθ2 + sin2 θdφ2

)
, (4)

which is the exterior. Here the quantity m(v) denotes the mass of the star
as measured by an observer at infinity. Matching leads to the junction
condition

(p‖)Σ = (Bq)Σ, (5)

where the hypersurface Σ defines the boundary of the radiating sphere.

The junction condition (5) together with the field equations (2) gives

2
Brt

AB2
+ 2

Btt

A2B
− 2

AtBt

A3B
− 2

BrBt

AB3
− 2

ArBr

AB3
− 2

ArBt

A2B2
− B2

r

B4

+
B2
t

A2B2
− 2

Ar

rAB2
− 2

Br

rB3
= 0, (6)

valid at the boundary of a shear-free radiating star.
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Lie symmetry analysis
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An nth order differential equation

F (r , t,A,B,Ar ,Br ,At ,Bt ,Arr ,Brr ,Art ,Brt ,Att ,Btt , . . . ) = 0 (7)

where A = A(r , t) and B = B(r , t), admits a Lie symmetry of the form

G = ξ1 (r , t,A,B)
∂

∂r
+ ξ2 (r , t,A,B)

∂

∂t

+η1 (r , t,A,B)
∂

∂A
+ η2 (r , t,A,B)

∂

∂B
(8)

provided that

G [n]F
∣∣∣
F=0

= 0 (9)

where G [n] is the nth prolongation of the symmetry G . The process is
algorithmic and so can be implemented by computer algebraic packages.
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Using PROGRAM LIE (Head 1993), we find the set of symmetries

G1 = −Af ′(t)
∂

∂A
+ f (t)

∂

∂t
, (10a)

G2 = A
∂

∂A
+ B

∂

∂B
, (10b)

G3 = A
∂

∂A
+ r

∂

∂r
, (10c)

where f (t) is an arbitrary function of t.

We take a general linear
combination

aG1 +bG2 +cG3 =
[
c + b − af ′(t)

]
A
∂

∂A
+bB

∂

∂B
+af (t)

∂

∂t
+cr

∂

∂r
, (11)

to reduce the partial differential equation (6) into ordinary differential
equations for further analysis. Note that a, b and c are arbitrary constants.
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Then (11) gives the invariants

x =
exp

(∫ t dt
af (t)

)
r1/c

, (12a)

A =
h(x)

f (t)
exp

(∫ t cdt

af (t)
+

∫ t bdt

af (t)

)
, (12b)

B = g(x)rb/c , (12c)

where a 6= 0 and c 6= 0 . Note that g and h being arbitrary functions of x .

Using the invariants (12) we can write (6) in the form[
2a2gx2b+2c+1

(
(b + c)g − xg ′

)]
h′h2 + 2acxb+c+2g2g ′h′h

−2c2x2g3g ′h′ +
[
c2xg2

(
xg ′2 − 2g

(
(b + c − 1)g ′ − xg ′′

))]
h

−
[
2acgxb+c+1

(
g
(
xg ′′ + g ′

)
− xg ′2

)]
h2 +

[
a2x2(b+c)

(
xg ′ − bg

)
×
(
(b + 2c)g − xg ′

)]
h3 = 0, (13)

where primes denote differentiation with respect to to the new variable x .
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To progress we make the assumption

g(x) = kh(x) and y =
h′

h
. (14)

Then the transformation (14) enables us to write (13) in the form

y ′ +
2a2bx2(b+c) + acxb+c

(
2axb+c − k

)
+ (1− b)c2k2 − c3k2

ckx (ck − axb+c)
y

+

(
3axb+c

2ck
+

1

2

)
y2 +

a2b(b + 2c)x2(b+c−1)

2ck (axb+c − ck)
= 0. (15)

Observe that (15) is a Riccati equation in the quantity y . Riccati
equations can be transformed to second order linear equations.
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We let

u(x) = exp

[∫ x (3axb+c

2ck
+

1

2

)
y(x)dx

]
. (16)

Note that in equation (16) the term
(

3axb+c

2ck + 1
2

)
is the coefficient of the

quantity y2 in (15). Using (16) equation (15) is transformed to

u′′ + γ(x)u′ + ζ(x)u = 0, (17)

where

γ(x) =
[
6a3bx3(b+c) + a2cx2(b+c)

(
6axb+c + (5b − 3)k

)
− c3k2(

6axb+c + (b − 1)k
)

+ ac2kxb+c
(

5axb+c + (2− 6b)k
)

−c4k3
] [

ckx
(
−3a2x2(b+c) + 2ackxb+c + c2k2

)]−1
, (18a)

ζ(x) =
a2b(b + 2c)x2(b+c−1)

(
3axb+c + ck

)
4c2k2 (axb+c − ck)

. (18b)

Therefore we have the remarkable feature that the second order nonlinear
equation (13) has been transformed to the linear equation (17) via the
transformations (14) and (16).
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Case b = −c
If we set b = −c then equation (17) becomes

x2u′′ + xu′ +
a2(3a + ck)

4k2(ck − a)
u = 0, (19)

which is a simpler form. It is interesting to note that this case produces
the Euler equation (19). We can integrate (19) to give

u(x) = c̃1 cosh

(
a
√

3a + ck

2k
√
a− ck

log(x)

)
+ c̃2 sinh

(
a
√

3a + ck

2k
√
a− ck

log(x)

)
,

(20)
where c̃1 and c̃2 are arbitrary constants of integration. Then from (16) we
obtain

y(x) =
ac
√

3a + ck√
a− ck

c1x
a
√

3a+ck
k
√
a−ck − c2

x (3axc + ck)

(
c1x

a
√

3a+ck
k
√
a−ck + c2

) , (21)

where c1 = c̃1 + c̃2 and c2 = c̃1 − c̃2.
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Hence we have the potentials

A =
1

f (t)

m

[
r−1/c exp

(∫ t dt

af (t)

)] a
√

3a+ck
2k
√
a−ck

+n

[
r−1/c exp

(∫ t dt

af (t)

)]− a
√

3a+ck
2k
√
a−ck

 2ck
3a+ck , (22a)

B = k
f (t)

r
A, (22b)

where m = c1c
3a+ck

2ck
3 and n = c2c

3a+ck
2ck

3 are constants. This is a new solution
to the master equation.

The line element for this case is

ds2 =
[(

mψ1/2 + nψ−1/2
)

2ck
3a+ck

]2
(
−
[

1

f (t)

]2

dt2 +

[
k

r

]2 [
dr2 + r2dΩ2

])
,

(23)

where ψ =
[
r−1/c exp

(∫ t dt
af (t)

)] a
√

3a+ck
k
√
a−ck

.
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The matter variables become

µ =
2
(
a2 − ack + c2k2

) (
ck
(
m2ψ2 − 4mnψ + n2

)
− 6amnψ

)
ck3(a− ck)(3a + ck) (mψ + n)2 (ψ−1/2 (mψ + n)

) 4ck
3a+ck

,

p‖ =
2a
(
6amnψ − ck

(
m2ψ2 − 4mnψ + n2

))
k2(ck − a)(3a + ck) (mψ + n)2 (ψ−1/2 (mψ + n)

) 4ck
3a+ck

,

p⊥ =
(a + ck)

(
ψ−1/2 (mψ + n)

)− 4ck
3a+ck

(
12amnψ + ck (mψ + n)2

)
ck3(3a + ck) (mψ + n)2 (ψ−1/2 (mψ + n)

) 4ck
3a+ck

,

q =

[
k

r

(
mψ1/2 + nψ−1/2

)
2ck

3a+ck

]−1

p‖.

From the above we generate the linear barotropic equation of state

p‖ = λµ, λ =
ack

a2 − ack + c2k2
, (25)

provided that k 6= −3a
c .
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Case: k = −3a/c and b = −c
If we set k = −3a/c and b = −c , then equation (13) becomes

24x2hh′′ − 24x2h′2 + 24xhh′ + c2h2 = 0, (26)

which is greatly simplified. Now (26) can be integrated to give

h(x) =
nxm

exp
[
c2

48 log2(x)
] , (27)

where m and n are constants of integration.

Hence we obtain the metric functions

A =
n

f (t)

[
r−1/c exp

(∫ t dt
af (t)

)]m
exp

(
c2

48 log2
[
r−1/c exp

(∫ t dt
af (t)

)]) , (28a)

B = −3a

c

f (t)

r
A. (28b)

This is also a new solution to the master equation (6).
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The line element for this case given by

ds2 =

 nϕm

exp
(
c2

48 log2 ϕ
)
2 [
−
(

1

f (t)

)2

dt2 + 9
( a

cr

)2 [
dr2 + r2dΩ2

]]
,

(29)

where ϕ = r−1/c exp
(∫ t dt

af (t)

)
.

The matter variables become

µ =
13
(
c4 log2 ϕ− 48mc2 logϕ+ 24

(
c2 + 24m2

))
exp

(
1

24c
2 log2 ϕ

)
2592a2n2ϕ2m

,

p‖ =

(
48mc2 logϕ− c4 log2 ϕ− 24

(
c2 + 24m2

))
exp

(
1

24c
2 log2 ϕ

)
864a2n2ϕ2m

,

p⊥ =

(
48mc2 logϕ− c4 log2 ϕ+ 48c2 + 576m2

)
exp

(
1

24c
2 log2 ϕ

)
648a2n2ϕ2m

,

q =

3a

cr

nϕm

exp
(
c2

48 log2 ϕ
)
−1

p‖.

We also have p‖ = λµ, λ = − 3
13 , which is linear and barotropic.
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Case: b =
(
±
√

3
3 − 1

)
c

In this case equation (13) becomes

6gg ′h′ − 3
(
2gg ′′ + g ′2

)
h ± 2

√
3g ′h2 = 0. (31)

The advantage of (31) is that it is a Bernoulli equation in h. Here g is
unspecified. We integrate (31) to obtain

h(t) = ±
√

3

2

g ′
√
g

√
g + d

, (32)

where d is a constant of integration.

Hence the potentials functions
become

A = ±
√

3

2

g ′
√
g

√
g + d

r±
√

3
3 , (33a)

B = gr±
√

3
3
−1, (33b)

which is a new exact solution for the shear-free model.
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The line element for this model becomes

ds2 = −3

4
g ′2r±2

√
3

3 dt2 + g2r±
2
√

3
3
−2
[
dr2 + r2dΩ2

]
. (34)

from (33). In the above we have set the arbitrary constant d = 0 without
any loss of any generality.

The matter variables become

µ =
14r
∓ 2√

3

3g2
,

p‖ = −4r
∓ 2√

3

3g2
,

p⊥ = − r
∓ 2√

3

g2
,

q =
[
gr±

√
3

3
−1
]−1

p‖.

This solution also satisfies the barotropic equation of state.

p‖ = λµ, λ = −2

7
, (36)

which is linear.
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Summary

We developed the junction condition equation that relates the radial
pressure to the heat flux which a highly nonlinear partial differential
equation in the metric functions.

We demonstrated that this equation admits three Lie point
symmetries.

Using the general linear combination of these symmetries we reduced
the governing highly nonlinear partial differential equation to ordinary
differential equations.

By solving the reduced ordinary differential equations and
transforming to the original variables we obtained exact solutions for
the master equation.

We present the line element explicitly in each case and show that our
solutions obey the linear barotropic equation of state.
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Thank You!
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